SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com SINGLE BUFFER/DRIVER WITH OPEN-DRAIN OUTPUT Check for Samples: SN74LVC1G07 FEATURES 1 * 2 * * * * * * Available in the Texas Instruments NanoFreeTM Package Supports 5-V VCC Operation Input and Open-Drain Output Accept Voltages up to 5.5 V Max tpd of 4.2 ns at 3.3 V Low Power Consumption, 10-A Max ICC 24-mA Output Drive at 3.3 V * * 1 A 2 GND 3 5 4 DRL PACKAGE (TOP VIEW) DCK PACKAGE (TOP VIEW) DBV PACKAGE (TOP VIEW) N.C. Ioff Supports Partial-Power-Down Mode Operation Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) N.C. 1 A 2 GND 3 VCC VCC 5 N.C. - No internal connection See mechanical drawings for dimensions. A1 A2 A B1 B2 GND C1 C2 1 6 VCC A 2 5 N.C. GND 3 4 Y DNU - Do not use YZV PACKAGE (TOP VIEW) A A1 A2 VCC GND B1 B2 Y 2 GND 3 VCC 4 Y DSF PACKAGE (TOP VIEW) N.C. A GND 1 6 2 5 3 4 VCC N.C. Y Table 1. YZP PACKAGE TERMINAL ASSIGNMENTS VCC Y A 5 Y N.C. DNU 1 Y 4 DRY PACKAGE (TOP VIEW) YZP PACKAGE (TOP VIEW) N.C. 1 2 A DNU VCC B A No ball C GND Y Table 2. YZV PACKAGE TERMINAL ASSIGNMENTS 1 2 A A VCC B GND Y 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoFree is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 2000-2011, Texas Instruments Incorporated SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com DESCRIPTION/ORDERING INFORMATION This single buffer/driver is designed for 1.65-V to 5.5-V VCC operation. NanoFreeTM package technology is a major breakthrough in IC packaging concepts, using the die as the package. The output of the SN74LVC1G07 device is open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 32 mA. This device is fully specified for partial-power-down applications using Ioff.The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ORDERING INFORMATION PACKAGE (1) TA Reel of 3000 SN74LVC1G07YZPR _ _ _CV_ NanoFreeTM - WCSP (DSBGA) 0.23-mm Large Bump - YZV (Pb-free) Reel of 3000 SN74LVC1G07YZVR ____ CV QFN - DRY Reel of 5000 SN74LVC1G07DRYRG4 CV SN74LVC1G07DBVR Reel of 250 SN74LVC1G07DBVT Reel of 3000 SN74LVC1G07DCKR Reel of 250 SN74LVC1G07DCKT SOT (SOT-553) - DRL Reel of 4000 SN74LVC1G07DRLR CV_ QFN - DSF Reel SN74LVC1G07DSFR CV SOT (SC-70) - DCK 2 SN74LVC1G07DRYR Reel of 3000 SOT (SOT-23) - DBV (3) TOP-SIDE MARKING (3) NanoFreeTM - WCSP (DSBGA) 0.23-mm Large Bump - YZP (Pb-free) -40C to 85C (1) (2) ORDERABLE PART NUMBER (2) C07_ CV_ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. DBV/DCK/DRL/DRY/DSF: The actual top-side marking has one additional character that designates the assembly/test site. YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, * = Pb-free). YZV: The actual top-side marking is on two lines. Line 1 has four characters to denote year, month, day, and assembly/test site. Line 2 has two characters which show the family and function code. Pin 1 identifier indicates solder-bump composition (1 = SnPb, * = Pb-free). Copyright (c) 2000-2011, Texas Instruments Incorporated SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com Table 3. FUNCTION TABLE INPUT A OUTPUT Y L L H Z LOGIC DIAGRAM (POSITIVE LOGIC) (DBV, DCK, DRL, DSF, DRY, and YZP Package) A 2 4 Y LOGIC DIAGRAM (POSITIVE LOGIC) (YZV Package) A 1 3 Y ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range -0.5 6.5 V VI Input voltage range (2) -0.5 6.5 V -0.5 6.5 V -0.5 6.5 V (2) UNIT VO Voltage range applied to any output in the high-impedance or power-off state VO Voltage range applied to any output in the high or low state (2) IIK Input clamp current VI < 0 -50 mA IOK Output clamp current VO < 0 -50 mA IO Continuous output current 50 mA 100 mA (3) Continuous current through VCC or GND JA Tstg (1) (2) (3) (4) Package thermal impedance (4) Storage temperature range DBV package 206 DCK package 252 DRL package 142 DRY package 234 DSF package 300 YZP package 132 YZV package 116 -65 150 C/W C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. The value of VCC is provided in the recommended operating conditions table. The package thermal impedance is calculated in accordance with JESD 51-7. Copyright (c) 2000-2011, Texas Instruments Incorporated 3 SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com RECOMMENDED OPERATING CONDITIONS (1) VCC Operating Supply voltage Data retention only 5.5 UNIT V 0.65 x VCC VCC = 2.3 V to 2.7 V High-level input voltage MAX 1.5 VCC = 1.65 V to 1.95 V VIH MIN 1.65 1.7 VCC = 3 V to 3.6 V V 2 0.7 x VCC VCC = 4.5 V to 5.5 V 0.35 x VCC VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V 0.7 VCC = 3 V to 3.6 V 0.8 VIL Low-level input voltage VI Input voltage 0 5.5 V VO Output voltage 0 5.5 V 0.3 x VCC VCC = 4.5 V to 5.5 V VCC = 1.65 V 4 VCC = 2.3 V IOL Low-level output current t/v Input transition rise or fall rate TA Operating free-air temperature 8 16 VCC = 3 V mA 24 VCC = 4.5 V 32 VCC = 1.8 V 0.15 V, 2.5 V 0.2 V 20 VCC = 3.3 V 0.3 V 10 VCC = 5 V 0.5 V (1) V ns/V 5 -40 85 C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOL = 100 A VOL 0.1 IOL = 4 mA 1.65 V 0.45 IOL = 8 mA 2.3 V 0.3 0.4 3V IOL = 24 mA IOL = 32 mA A input MIN TYP (1) MAX 1.65 V to 5.5 V IOL = 16 mA II VCC V 0.55 4.5 V VI = 5.5 V or GND UNIT 0.55 0 to 5.5 V 5 A 0 10 A 1.65 V to 5.5 V 10 A 3 V to 5.5 V 500 A Ioff VI or VO = 5.5 V ICC VI = 5.5 V or GND, IO = 0 ICC One input at VCC - 0.6 V, Other inputs at VCC or GND Ci VI = VCC or GND 3.3 V 4 pF Co VO = VCC or GND 3.3 V 5 pF (1) 4 All typical values are at VCC = 3.3 V, TA = 25C. Copyright (c) 2000-2011, Texas Instruments Incorporated SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com SWITCHING CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A Y VCC = 1.8 V 0.15 V VCC = 2.5 V 0.2 V VCC = 3.3 V 0.3 V VCC = 5 V 0.5 V MIN MAX MIN MAX MIN MAX MIN MAX 2.4 8.3 1 5.5 1.5 4.2 1 3.5 UNIT ns OPERATING CHARACTERISTICS TA = 25C Cpd PARAMETER TEST CONDITIONS Power dissipation capacitance f = 10 MHz Copyright (c) 2000-2011, Texas Instruments Incorporated VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V VCC = 5 V TYP TYP TYP TYP 3 3 4 6 UNIT pF 5 SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com PARAMETER MEASUREMENT INFORMATION (OPEN DRAIN) VLOAD S1 RL From Output Under Test Open TEST GND RL CL (see Note A) S1 tPZL (see Notes E and F) VLOAD tPLZ (see Notes E and G) VLOAD tPHZ/tPZH VLOAD LOAD CIRCUIT INPUT VCC VI 1.8 V 0.15 V 2.5 V 0.2 V 3.3 V 0.3 V 5 V 0.5 V VM tr/tf 2 ns 2 ns 2.5 ns 2.5 ns VCC VCC 3V VCC VLOAD VCC/2 VCC/2 1.5 V VCC/2 2 x VCC 2 x VCC 6V 2 x VCC CL RL V 30 pF 30 pF 50 pF 50 pF 1 k 500 500 500 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tw tsu th VI VM Input VM VM VM Data Input 0V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VOLTAGE WAVEFORMS PULSE DURATION VI VM Input VM 0V VM VM VOL tPHL VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS tPLZ VLOAD/2 VM tPZH VOH Output VM 0V Output Waveform 1 S1 at VLOAD (see Note B) tPLH VM VM tPZL VOH Output VI Output Control tPHL tPLH VI VOL + V VOL tPHZ Output Waveform 2 S1 at VLOAD (see Note B) VM VLOAD/2 - V VLOAD/2 0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 . D. The outputs are measured one at a time, with one transition per measurement. E. Since this device has open-drain outputs, tPLZ and tPZL are the same as tpd. F. tPZL is measured at VM. G. tPLZ is measured at VOL + V. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 6 Copyright (c) 2000-2011, Texas Instruments Incorporated SN74LVC1G07 SCES296Y - FEBRUARY 2000 - REVISED JUNE 2011 www.ti.com REVISION HISTORY Changes from Revision W (June 2008) to Revision X * Page Added DSF Package to datasheet ....................................................................................................................................... 1 Copyright (c) 2000-2011, Texas Instruments Incorporated 7 PACKAGE OPTION ADDENDUM www.ti.com 1-Jun-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp SN74LVC1G07DBVR ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DBVRE4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DBVRG4 ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DBVT ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DBVTE4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DBVTG4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKT ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKTE4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DCKTG4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DRLR ACTIVE SOT DRL 5 4000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DRLRG4 ACTIVE SOT DRL 5 4000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DRYR ACTIVE SON DRY 6 5000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DRYRG4 ACTIVE SON DRY 6 5000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LVC1G07DSFR ACTIVE SON DSF 6 5000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Addendum-Page 1 (3) Samples (Requires Login) PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 1-Jun-2012 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) SN74LVC1G07YZPR ACTIVE DSBGA YZP 5 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM SN74LVC1G07YZVR ACTIVE DSBGA YZV 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN74LVC1G07 : * Automotive: SN74LVC1G07-Q1 * Enhanced Product: SN74LVC1G07-EP NOTE: Qualified Version Definitions: Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 1-Jun-2012 * Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects * Enhanced Product - Supports Defense, Aerospace and Medical Applications Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 22-Aug-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) SN74LVC1G07DBVR SOT-23 DBV 5 3000 180.0 9.2 SN74LVC1G07DBVR SOT-23 DBV 5 3000 178.0 SN74LVC1G07DBVR SOT-23 DBV 5 3000 178.0 SN74LVC1G07DBVT SOT-23 DBV 5 250 SN74LVC1G07DBVT SOT-23 DBV 5 W Pin1 (mm) Quadrant 3.17 3.23 1.37 4.0 8.0 Q3 9.0 3.23 3.17 1.37 4.0 8.0 Q3 9.2 3.3 3.2 1.55 4.0 8.0 Q3 178.0 9.2 3.3 3.2 1.55 4.0 8.0 Q3 250 180.0 9.2 3.17 3.23 1.37 4.0 8.0 Q3 SN74LVC1G07DBVT SOT-23 DBV 5 250 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 SN74LVC1G07DCKR SC70 DCK 5 3000 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3 SN74LVC1G07DCKR SC70 DCK 5 3000 178.0 9.2 2.4 2.4 1.22 4.0 8.0 Q3 SN74LVC1G07DCKT SC70 DCK 5 250 180.0 9.2 2.3 2.55 1.2 4.0 8.0 Q3 SN74LVC1G07DCKT SC70 DCK 5 250 178.0 9.0 2.4 2.5 1.2 4.0 8.0 Q3 SN74LVC1G07DCKT SC70 DCK 5 250 178.0 9.2 2.4 2.4 1.22 4.0 8.0 Q3 SN74LVC1G07DRLR SOT DRL 5 4000 180.0 9.5 1.78 1.78 0.69 4.0 8.0 Q3 SN74LVC1G07DRLR SOT DRL 5 4000 180.0 8.4 1.98 1.78 0.69 4.0 8.0 Q3 SN74LVC1G07DRYR SON DRY 6 5000 179.0 8.4 1.2 1.65 0.7 4.0 8.0 Q1 SN74LVC1G07DSFR SON DSF 6 5000 180.0 9.5 1.16 1.16 0.5 4.0 8.0 Q2 SN74LVC1G07YZPR DSBGA YZP 5 3000 178.0 9.2 1.02 1.52 0.63 4.0 8.0 Q1 SN74LVC1G07YZPR DSBGA YZP 5 3000 180.0 8.4 1.02 1.52 0.63 4.0 8.0 Q1 SN74LVC1G07YZVR DSBGA YZV 4 3000 178.0 9.2 1.0 1.0 0.63 4.0 8.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 22-Aug-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LVC1G07DBVR SOT-23 DBV 5 3000 205.0 200.0 33.0 SN74LVC1G07DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 SN74LVC1G07DBVR SOT-23 DBV 5 3000 180.0 180.0 18.0 SN74LVC1G07DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 SN74LVC1G07DBVT SOT-23 DBV 5 250 205.0 200.0 33.0 SN74LVC1G07DBVT SOT-23 DBV 5 250 180.0 180.0 18.0 SN74LVC1G07DCKR SC70 DCK 5 3000 205.0 200.0 33.0 SN74LVC1G07DCKR SC70 DCK 5 3000 180.0 180.0 18.0 SN74LVC1G07DCKT SC70 DCK 5 250 205.0 200.0 33.0 SN74LVC1G07DCKT SC70 DCK 5 250 180.0 180.0 18.0 SN74LVC1G07DCKT SC70 DCK 5 250 180.0 180.0 18.0 SN74LVC1G07DRLR SOT DRL 5 4000 180.0 180.0 30.0 SN74LVC1G07DRLR SOT DRL 5 4000 202.0 201.0 28.0 SN74LVC1G07DRYR SON DRY 6 5000 203.0 203.0 35.0 SN74LVC1G07DSFR SON DSF 6 5000 180.0 180.0 30.0 SN74LVC1G07YZPR DSBGA YZP 5 3000 220.0 220.0 35.0 SN74LVC1G07YZPR DSBGA YZP 5 3000 220.0 220.0 34.0 SN74LVC1G07YZVR DSBGA YZV 4 3000 220.0 220.0 35.0 Pack Materials-Page 2 X: Max = 1.43 mm, Min = 1.37 mm Y: Max = 0.93 mm, Min = 0.87 mm X: Max = 1.43 mm, Min = 1.37 mm Y: Max = 0.93 mm, Min = 0.87 mm IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated