3875081 GE SOLID STATE Standard Power MOSFETs O14 | 367506) 0018084 ? 182yy pT 37~l IRF320, IRF321, IRF322, IRF323 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 2.5A and 3.0A, 350V-400V los(On) = 1.80 and 252 Features: @ SOA is power-dissipation limited Nanosecond switching speeds m Linear transfer characteristics @ High input impedance = Majority carrier device The IRF320, IRF321, IRF322 and IRF323 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings File Number 1569 N-CHANNEL ENHANCEMENT MODE Ss 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE {FLANGE} GATE 92CS-37601 JEDEC TO-204AA Parameter IRF320 IRF321 1AF322 IRF323 Units Vos Drain - Source Valtage @ 400 a5O 400 350 v Vocr Drain Gate Voltage (Rgg = 20K0} @ 400 350 400 350 Vv to @Te = 26C Continuous Drain Current 3.0 3.0 25 2.5 A 'p @Te = 100C Continuous Dram Current 2.0 2.0 15 1.5 A ip Pufsed Drain Current @ 12 12 to 10 A - -T Ves Gate - Source Voltage 220 Vv Pp @Tc = 25C Max Power Oissipation 40 (See Fig. 14} Ww Linear Derating Factor 032 {SeeFig 14) weet iM Inductive Current, Clamped (See Fig. 15 and 76)L = 100pH A 12 I 2 I 10 |! 10 Ty a -#510 160 c Lead Temperature 300 (0.063 in {1.6mm) from case for 10s] C 242. Standard Power MOSFETs IRF320, IRF321, IRF322, IRF323 Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min, | Typ. | Max. Units Test Canditions BVpss Oran - Saurce Sreakdown Voltage tRF320 _ _ - inFa22 | 420 v Vos = ov IRF321 = iRF323 | 38 - - v Ip = 250pA Vasith) Gate Threshold Voltage ALL 20 [| [40 v Vos = Vas. 'p = 25024 Igss _ Gate Source Leakage Forward ALL = - 100 nA Yog = 20V Igsg _ Gate-Source Leakage Reverse ALL = | -100 nA Vos = -20V loss Zero Gate Voltage Draws Current ALL - - 250 al Vps = Max. Rating. Vgsg = OV : ~ [1000 | pA Vos = Max. Rating x 0.8, Vgg = OV, To = 125C Ipton) On-State Dra Currant @ IRF320 | a4 _ _ A (RF321 Vos) 4 A Vgg = 10v DS? 'ofon)* "OSton| max. Yas = wnra22 | 95 | _ _ A IRF323 * Rpston} Static Drain-Soures On-State 1AFa20 | _ oP" Resistance (F321 16 | 18 2 Veg = 10V Ip = 1 5A tRE322 . 18 25 Q IRF 329 Mis Forward @ ALL ro [207 - | sw Vos? 'piont pston) max: 'p = 1-54 Cisg__tnput C ALL [450 | 600 | oF Vg = OV. Vps = 25V,.F = 1.0 MHz Coss Output Capacitance ALL = 100 | 200 pF See Fig 10 Crss Reverse Wansfer Capacitance ALL = 20 40 pF tion) _ Turn On Delay Time ALL | 20 [ 40 ns Von = 0 5 BVpgg. tp = 1 5A, Zag = SON t Ase Time ALL = 25 50 ns See Fig. 17 tdtort) Tem Olf Delay Time ALL = 50 | too ns IMOSFET switching umes are essentially rn Fall time ALL = 25 50 7S independent of operating temperature.) a Total Gate Charge - Ves = 10V, 'p =4O0A, Vos = 0.8 Max. Rating 9 (Gate-Source Plus Gate Oram) ALL 12 4 18 | nc Seo Fig 18 for test cweut. (Gate charge 1s essentially f Om Gate Source Charge ALL _ 60 ne independent of operating temperature } Qga Gate-Drain *Milles"') Charge ALL - 60 - ac lp internal Drain Inductance ALL = 50 - nH Measured between Moditted MOSFET the contact screw on symbol! showing the header that is closer to internal device source and gate pins inductances and center of die. lg intemal! Source Inductance ALL jrzs{ - aH Measured (rom the to souree pin, 6 mm (0.25 in } from header G ~ and source bending is pad. s Thermal Resistance Rinse Junction to Case ALL = - 3.12 | ecw Pincg _ Case-to-Sink ACL - jorf fecw Mounting surface flat, smooth, and greased. AingA _ Junction-to Ambient ALL = = 30 screw Free Air Operation Source-Drain Diode Ratings and Characteristics is Continuous Source Current IRF320 _ _ 3.0 A Modified MOSFET symbol {Body Diode} (AFI21 " showing the integral o - - . 1AF322 teverse P-N junction recufier. tar3za |" - | ~ | 25 4 4A ism Pulse Source Current IRF320 | _ {Body Diode} @ IRF221 12 A a IRF322 s iregz3 | ~ | ~ {| 2] A Vsp _ Ghode Forward Voltage @ IRF320 - - . iaFa21 | | te v Te = 26C, Ig = 3.04, Vgg = OV wAF322 iRF323 | - | 15 v Tg = 25C, Ig = 2.5A, Vgg = OV ter Reveraa Recovery Time ALL = 450 | a Ty = 150C, Ip = 3.04, dip/dt = 100A/ns Qarn Reverse Recovered Charge ALL - 3.1 - ae Ty = 150C, tp = 3,0A, dipfdt = 100A/ps ton Forward Turn on Time ALL {intrinsic turn-on time is negligible, Turn on speedis substantially controlled bys + Lp Ory = 25C to 150C, @Pulse Test: Pulse width < 30Qus, Duty Cycle < 2% Repetitve Rating: Pulse width limited by max. junction temperature See Transiant Thermal impedance Curve (Fig. 5). 243 SS3875081 G Standard Power MOSFETs E SOLID STATED. ye Bsazsos1 covazo, 1 T39-/) IRF320, IRF321, [RF322, IRF323 Ig, ORAIN CURRERT (AMPERES nm Ip, DRAIN CURRENT (AMPERES) to. DAAIH CURRENT (AMPERES) A 6 n 6 n 1 2 3 4 5 6 Vos. ORAIM TO-SOURCE VOLTAGE (VOLTS) Vas GATE TO SOURCE VOLTAGE {VOLTS} Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics so OPERATION IN THIS AREA IS LIMITED BY tp, DRAIN CURRENT (AMPERES) ns Tee O25 Ty = 18000 MAX. Ringe * 3.12 at the (2 100 $0 100 200 500 Vos. GRAIN-TO-SQUACE VOLTAGE (VOLTS) 100 Vos, DRAIN TO-SQURCE VOLTAGE {VOLTS} Fig. 3 ~ Typical Saturation Characteristics Fig. 4 ~ Maximum Safe Operating Area Bow o 2 he o THERMAL (MPEQANCE (PER UNIT) 3 8 ZrnIClO/Rep je, NORMALIZED EFFECTIVE TRANSIENT 10-5 fot jx tz 1, DUTY FACTOR, O= t- 2 PER UNIT BASE = Runyc = 3 12 DEG. CAV. 3 Tam -Teo* Pom Zinucltl- 2 1-2 2 1074 2 5 10 2 10 ty. SQUARE WAVE PULSE DURATION (SECONDS) 2 5 wt 2 5 493 : Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Durationoe s 9B 75081 OO1a30e2 3 i 3875081 GE SOLID STATE - BiE 18302 OT39-// Standard Power MOSFETs IRF320, IRF321, IRF322, IRF323 on 3s we fy. TRANSCOMDUCTANCE (SIEMEAS} wn Ipg. REVERSE DAAIN CURRENT (AMPERES} 1y * 25C, 10 0 2 3 4 5 6 0 1 2 3 4 1p, DRAIN CURRENT LAMPERES) Vo. SQURCE-TO DRAIN VOLTAGE {VOLTS} Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typicat Source-Drain Diode Forward Voltage 125 22 . 5 2 2 m a oss OG BV pss, ORAIN TO-SOURCE BREAKOOWN VOLTAGE (NORMALIZED) Apston). ORAIN-TO-SOUACE ON RESISTANCE (NORMALIZED) a7 a2 40 0 40 80 120 180 40 0 40 0 120 Ty, JUNCTION TEMPERATURE (C? Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature <0 tei Mi Cas * Cyt Ogg, Cus Cons = Ogg Cy 6, cnet = Cgy + Cyd I C, CAPACITANCE (pF) Vos, GATE-TO SOUACE VOLTAGE (VOLTS) Ipe4a TEST CIRCUIT o 0) 2 x oo) 50 Q 4 8 1 16 20 Vos, DRAIN-TO SOURCE VOLTAGE [VOLTS} lg, TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typicat Gate Charge Vs. Gate-to-Source Voltage ee 245OL DEG 38?5041 0018303 5S i 3875081 GE SOLID STATE | _ OTE 18303 DD T*3B9-/] Standard Power MOSFETs : IRF320, IRF321, IRF322, IRF323 6 Fgstons MEASURED WITH CURRENT PULSE OF ay f POs DURATION, INITIAL Ty = 25C (HEATING 3 | EFFECT OF 2.0 ps PULSE IS MINIMAL) a 7 a 3 = = a z 2 Ba Af = 3 Vgs* tov y Z3 z Vgs~ 20 & 33 Fd 2 = Ss = 3 3 3 zZ? e, | s 2 a 5 z s 31 ' B [~] 0 a 2 6 8 10 R B, 50 4B 100 125 150 Ip. ORAIN CURRENT (AMPERES) To, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature Pg, POWER DISSIPATION (WATTS) a 2 40 a rt} 100 420 140 Te, CASE TEMPERATURE {C) Fig. 14 Power Vs. Temperature Derating Curve VARY 1) TO OBTAIN REQUIRED PEAK Ay y = 088Vp55 = V+ 0 758Vps5 | Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms - 9 *os CURRENT (ISOLATED ADJUST, OEY REGULATOR SUPPLY) To O8TAIN SPECIFIED tp . SAME TYPE AS DUT PULSE lw T GENERATOR 0.0.7. BATTERY | r q TO SCOPE oon HIGH FREQUENCY SHUNT Fig. 17 Switching Time Test Circuit | l sma Ome G CURRENT = CURRENT SKUAT SHUNT Fig. 18 Gate Charge Test Circuit 246, x ee ee