LM833, NCV833 Low Noise, Audio Dual Operational Amplifier The LM833 is a standard low-cost monolithic dual general-purpose operational amplifier employing Bipolar technology with innovative high-performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise (4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/ms slew rate, 0.3 mV input offset voltage with 2.0 mV/C temperature coefficient of input offset voltage. The LM833 output stage exhibits no dead-band crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response. For an improved performance dual/quad version, see the MC33079 family. Features * * * * * * * * * * http://onsemi.com MARKING DIAGRAMS 8 1 Low Voltage Noise: 4.5 nV/ Hz High Gain Bandwidth Product: 15 MHz High Slew Rate: 7.0 V/ms Low Input Offset Voltage: 0.3 mV Low T.C. of Input Offset Voltage: 2.0 mV/C Low Distortion: 0.002% Excellent Frequency Stability Dual Supply Operation NCV Prefix for Automotive and Other Applications Requiring Site and Change Controls These Devices are Pb-Free and are RoHS Compliant MAXIMUM RATINGS Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range (Note 1) Symbol Value Unit VS +36 V VIDR 30 V V Input Voltage Range (Note 1) VIR 15 Output Short Circuit Duration (Note 2) tSC Indefinite Operating Ambient Temperature Range TA -40 to +85 C Operating Junction Temperature TJ +150 C Storage Temperature Tstg -60 to +150 C ESD Protection at any Pin - Human Body Model - Machine Model Maximum Power Dissipation (Notes 2 and 3) Vesd PD V 600 200 September, 2011 - Rev. 6 1 LM833N A WL YY WW G = Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package LM833 ALYW G SOIC-8 D SUFFIX CASE 751 1 1 LM833 A L Y W G = Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package PIN CONNECTIONS Output 1 1 2 1 8 VCC 7 Output 2 Inputs 1 3 6 2 500 mW Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see power dissipation performance characteristic). 3. Maximum value at TA 85C. (c) Semiconductor Components Industries, LLC, 2011 LM833N AWL YYWWG PDIP-8 N SUFFIX CASE 626 1 VEE 4 Inputs 2 5 (Top View) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. Publication Order Number: LM833/D LM833, NCV833 ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit VIO - 0.3 5.0 mV DVIO/DT - 2.0 - mV/C Input Offset Current (VCM = 0 V, VO = 0 V) IIO - 10 200 nA Input Bias Current (VCM = 0 V, VO = 0 V) IIB - 300 1000 nA Common Mode Input Voltage Range VICR - -12 +14 -14 +12 - V Large Signal Voltage Gain (RL = 2.0 kW, VO = 10 V) AVOL 90 110 - dB Output Voltage Swing: RL = 2.0 kW, VID = 1.0 V RL = 2.0 kW, VID = 1.0 V RL = 10 kW, VID = 1.0 V RL = 10 kW, VID = 1.0 V VO+ VO- VO+ VO- 10 - 12 - 13.7 -14.1 13.9 -14.7 - -10 - -12 Common Mode Rejection (Vin = 12 V) CMR 80 100 - Power Supply Rejection (VS = 15 V to 5.0 V, -15 V to -5.0 V) PSR 80 115 - dB ID - 4.0 8.0 mA Input Offset Voltage (RS = 10 W, VO = 0 V) Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VO = 0 V, TA = Tlow to Thigh Power Supply Current (VO = 0 V, Both Amplifiers) V dB AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit SR 5.0 7.0 - V/ms GBW 10 15 - MHz Slew Rate (Vin = -10 V to +10 V, RL = 2.0 kW, AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Unity Gain Frequency (Open Loop) fU - 9.0 - MHz Unity Gain Phase Margin (Open Loop) qm - 60 - Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) en - 4.5 - nV Hz Equivalent Input Noise Current (f = 1.0 kHz) in - 0.5 - pA Hz Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD 1.0%) BWP - 120 - kHz Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD - 0.002 - % CS - -120 - dB 1000 800 IIB , INPUT BIAS CURRENT (nA) PD , MAXIMUM POWER DISSIPATION (mW) Channel Separation (f = 20 Hz to 20 kHz) 600 400 200 0 -50 0 50 100 TA, AMBIENT TEMPERATURE (C) VCC = +15 V VEE = -15 V VCM = 0 V 800 600 400 200 0 -55 150 Figure 1. Maximum Power Dissipation versus Temperature -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 125 Figure 2. Input Bias Current versus Temperature http://onsemi.com 2 LM833, NCV833 10 TA = 25C I S , SUPPLY CURRENT (mA) I IB , INPUT BIAS CURRENT (nA) 800 600 400 200 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 8.0 6.0 RL = TA = 25C VO + VEE 4.0 2.0 0 20 VCC IS 0 5.0 Figure 3. Input Bias Current versus Supply Voltage 110 VCC = +15 V VEE = -15 V RL = 2.0 kW 105 100 95 90 -55 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 RL = 2.0 kW TA = 25C 100 90 80 5.0 125 100 45 80 Phase 40 20 VCC = +15 V VEE = -15 V RL = 2.0 kW TA = 25C Gain 135 0 1.0 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 90 1.0 M 180 10 M GBW, GAIN BANDWIDTH PRODUCT (MHz) 0 60 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 Figure 6. DC Voltage Gain versus Supply Voltage , EXCESS PHASE (DEGREES) AVOL, OPEN LOOP VOLTAGE GAIN (dB) Figure 5. DC Voltage Gain versus Temperature 120 20 Figure 4. Supply Current versus Supply Voltage AVOL, DC VOLTAGE GAIN (dB) AVOL, DC VOLTAGE GAIN (dB) 110 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 15 10 5.0 0 -55 Figure 7. Open Loop Voltage Gain and Phase versus Frequency VCC = +15 V VEE = -15 V f = 100 kHz -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 Figure 8. Gain Bandwidth Product versus Temperature http://onsemi.com 3 125 LM833, NCV833 GBW, GAIN BANDWIDTH PRODUCT (MHz) 30 10 SR, SLEW RATE (V/ s) f = 100 kHz TA = 25C 20 10 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 8.0 Falling Rising 6.0 VCC = +15 V VEE = -15 V RL = 2.0 kW AV = +1.0 4.0 2.0 -55 20 Figure 9. Gain Bandwidth Product versus Supply Voltage SR, SLEW RATE (V/ s) 8.0 RL = 2.0k W AV = +1.0 TA = 25C Falling 4.0 + Vin 2.0 0 25 50 75 TA, AMBIENT TEMPERATURE (C) VO RL 100 125 35 Rising 6.0 + Figure 10. Slew Rate versus Temperature VO , OUTPUT VOLTAGE (V pp ) 10 -25 Vin VO RL 30 25 20 VCC = +15 V VEE = -15 V RL = 2.0 kW THD v 1.0% TA = 25C 15 10 5.0 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 0 20 10 VO, OUTPUT VOLTAGE (V pp ) 20 15 RL = 10 kW TA = 25C VO + 10 5.0 0 -5.0 -10 VO - -15 -20 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 1.0 k 10 k 1.0 M f, FREQUENCY (Hz) 10 M 100 k Figure 12. Output Voltage versus Frequency V sat , OUTPUT SATURATION VOLTAGE |V| Figure 11. Slew Rate versus Supply Voltage 100 20 15 +Vsat -Vsat 14 VCC = +15 V VEE = -15 V RL = 10 kW 13 -55 Figure 13. Maximum Output Voltage versus Supply Voltage -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 Figure 14. Output Saturation Voltage versus Temperature http://onsemi.com 4 125 LM833, NCV833 VCC = +15 V VEE = -15 V TA = 25C 120 100 80 160 DVCC CMR, COMMON MODE REJECTION (dB) PSR, POWER SUPPLY REJECTION (dB) 140 - ADM DVO + DVEE -PSR +PSR 60 40 20 +PSR = 20 Log -PSR = 20 Log 0 100 1.0 k DVO/ADM ( DVCC ) ( DVDVO/AEEDM ) 10 k 100 k f, FREQUENCY (Hz) 1.0 M 140 80 60 40 20 100 10 M VCC = +15 V VEE = -15 V VCM = 0 V DVCM = 1.5 V TA = 25C 1.0 k - 1.0 M 10 M Figure 16. Common Mode Rejection versus Frequency VCC = +15 V VEE = -15 V RL = 2.0 kW TA = 25C VO RL 0.01 VO = 1.0 Vrms VO = 3.0 Vrms 100 1.0 k 10 k 5.0 VCC = +15 V VEE = -15 V RS = 100 W TA = 25C 2.0 1.0 10 100 k 100 f, FREQUENCY (Hz) Figure 17. Total Harmonic Distortion versus Frequency 2.0 100 VCC = +15 V VEE = -15 V TA = 25C 1.0 0.7 0.5 0.4 0.3 100 1.0 k f, FREQUENCY (Hz) 10 k 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 18. Input Referred Noise Voltage versus Frequency e n, INPUT NOISE VOLTAGE (nV/ Hz ) i n , INPUT NOISE CURRENT (pA/ Hz ) 10 k 100 k f, FREQUENCY (Hz) 10 + 0.2 10 DVO DVCM x ADM DV0 100 e n, INPUT NOISE VOLTAGE (nV/ Hz ) THD, TOTAL HARMONIC DISTORTION (%) + CMR = 20 Log 1.0 0.001 10 - ADM 120 Figure 15. Power Supply Rejection versus Frequency 0.1 DVCM 100 k VCC = +15 V VEE = -15 V Vn(total) = (inRS)2 +en2 + 4KTRS TA = 25C 10 1.0 1.0 10 100 1.0 k 10 k 100 k RS, SOURCE RESISTANCE (W) Figure 19. Input Referred Noise Current versus Frequency Figure 20. Input Referred Noise Voltage versus Source Resistance http://onsemi.com 5 1.0 M VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 0 pF AV = -1.0 TA = 25C VO , OUTPUT VOLTAGE (5.0 V/DIV) VO , OUTPUT VOLTAGE (5.0 V/DIV) LM833, NCV833 VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 0 pF AV = +1.0 TA = 25C t, TIME (2.0 ms/DIV) t, TIME (2.0 ms/DIV) VO , OUTPUT VOLTAGE (10 mV/DIV) Figure 21. Inverting Amplifier Figure 22. Noninverting Amplifier Slew Rate VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 0 pF AV = +1.0 TA = 25C t, TIME (200 ns/DIV) Figure 23. Noninverting Amplifier Overshoot ORDERING INFORMATION Package Shipping LM833NG PDIP-8 (Pb-Free) 50 Units / Rail LM833DG SOIC-8 (Pb-Free) 98 Units / Rail LM833DR2G SOIC-8 (Pb-Free) 2500 / Tape & Reel NCV833DR2G* SOIC-8 (Pb-Free) 2500 / Tape & Reel Device For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV prefix indicates qualified for automotive use. http://onsemi.com 6 LM833, NCV833 PACKAGE DIMENSIONS PDIP-8 N SUFFIX CASE 626-05 ISSUE M D A D1 E 8 5 E1 1 4 NOTE 5 F c E2 END VIEW TOP VIEW NOTE 3 e/2 A L A1 C SEATING PLANE E3 e 8X SIDE VIEW b 0.010 M C A END VIEW http://onsemi.com 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RESTRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A A1 b C D D1 E E1 E2 E3 e L INCHES NOM MAX ---- 0.210 ---- ---- 0.018 0.022 0.010 0.014 0.365 0.400 ---- ---- 0.310 0.325 0.250 0.280 0.300 BSC ---- ---- 0.430 0.100 BSC 0.115 0.130 0.150 MIN ---- 0.015 0.014 0.008 0.355 0.005 0.300 0.240 MILLIMETERS MIN NOM MAX ---- ---- 5.33 0.38 ---- ---- 0.35 0.46 0.56 0.20 0.25 0.36 9.02 9.27 10.02 0.13 ---- ---- 7.62 7.87 8.26 6.10 6.35 7.11 7.62 BSC ---- ---- 10.92 2.54 BSC 2.92 3.30 3.81 LM833, NCV833 PACKAGE DIMENSIONS SOIC-8 D SUFFIX CASE 751-07 ISSUE AK -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 0.25 (0.010) M Y M 1 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative LM833/D