Products and specifications discussed herein are subject to change by Micron without notice.
1Gb: x4, x8, x16 DDR3 SDRAM
Features
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D1.fm - Rev G 2/09 EN 1©2006 Micron Technology, Inc. All rights reserved.
DDR3 SDRAM
MT41J256M4 – 32 Meg x 4 x 8 banks
MT41J128M8 – 16 Meg x 8 x 8 banks
MT41J64M16 – 8 Meg x 16 x 8 banks
Features
•VDD = VDDQ = +1.5V ±0.075V
1.5V center -terminated push/pull I/O
Differential bidirectional data strobe
•8n-bit prefetch architecture
Differential clock inputs (CK, CK#)
•8 internal banks
N ominal and dynamic on-die termination (ODT) for
data, strobe, and mask signals
CAS (READ) latency (CL): 5, 6, 7, 8, 9, 10, or 11
POSTED CAS ADDITIVE latency (AL): 0, CL - 1, CL - 2
CAS (WRITE) latency (CWL): 5, 6, 7, 8, based on tCK
Fixed burst length (BL) of 8 and burst chop (BC) of 4
(via the mode register set [MRS])
Selectable BC4 or BL8 on-the-fly (OTF)
Self refresh mode
•T
C of 0°C to 95°C
64ms, 8,192 cycle refresh at 0°C to 85°C
32ms at 85°C to 95°C
Clock frequency range of 300–800 MHz
Self refresh temperature (SRT)
•Automatic self refresh (ASR)
Write leveli ng
•Multipurpose register
Output driver calibration
Notes: 1. Not all options listed can be comb ine d to
define an offered product. Use the Part Cata-
log Search on www.micron.com for available
offerings.
Options1Marking
Configuration
256 Meg x 4 256M4
128 Meg x 8 128M8
64 Meg x 16 64M16
FBGA package (Pb-free) - x4, x8
78-ball (8mm x 11.5mm) Rev. E, F JP
78-ball (9mm x 11.5mm) Rev. D HX
86-ball (9mm x 15.5mm) Rev. B BY
FBGA package (Pb-free) - x16
96-ball (8mm x 14mm) Rev. E JT
96-ball (9mm x 15.5mm) Rev. B LA
Timing - cycle time
1.25ns @ CL = 11 (DDR3-1600) -125
1.25ns @ CL = 10 (DDR3-1600) -125E
1.5ns @ CL = 10 (DDR3-1333) -15
1.5ns @ CL = 9 (DDR3-1333) -15E
1.87ns @ CL = 8 (DDR3-1066) -187
1.87ns @ CL = 7 (DDR3-1066) -187E
Operating temperature
Commercial (0°C TC 95°C) None
Industrial (–40°C TC 95°C; IT
Automotive (–40°C TC 105°C; AT
Revision :B/:D/:E/:F
Table 1: Key Timing Parameters
Speed Grade Data Rate (MT/s) Target tRCD-tRP-CL tRCD (ns) tRP (ns) CL (ns)
-125 1600 11-11-11 13.75 13.75 13.75
-125E 1600 10-10-10 12.5 12.5 12.5
-15 1333 10-10-10 15 15 15
-15E 1333 9-9-9 13.5 13.5 13.5
-187 1066 8-8-8 15 15 15
-187E 1066 7-7-7 13.1 13.1 13.1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D1.fm - Rev G 2/09 EN 2©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Features
Figure 1: 1Gb DDR3 Part Numbers
Notes: 1. Not all options listed can be combined to define an offered product. Use the Part Catalog
Search on www.micron.com for available offerings.
FBGA Part Marking Decoder
Due to space limitations, FBGA-packaged components have an abbreviated part
marking that is differ ent from the part num ber. For a quick conv ersion of an FBGA code,
see the FBGA Part Marking Decoder on Microns Web site: www.micron.com.
Table 2: Addressing
Parameter 256 Meg x 4 128 Meg x 8 64 Meg x 16
Configuration 32 Meg x 4 x 8 banks 16 Meg x 8 x 8 banks 8 Meg x 16 x 8 banks
Refresh count 8K 8K 8K
Row addressing 16K (A[13:0]) 16K (A[13:0]) 8K (A[12:0])
Bank addressing 8 (BA[2:0]) 8 (BA[2:0]) 8 (BA[2:0])
Column addressing 2K (A[11, 9:0]) 1K (A[9:0]) 1K (A[9:0])
Package
78-ball 8mm x 11.5mm FBGA
78-ball 9mm x 11.5mm FBGA
86-ball 9mm x 15.5mm FBGA
96-ball 8mm x 14mm FBGA
96-ball 9mm x 15.5mm FBGA
Mark
JP
HX
BY
JP
LA
Rev.
E, F
D
B
E
B
Example Part Number: MT41J256M4BY-15:B
Configuration
256 Meg x 4
128 Meg x 8
64 Meg x 16
256M4
128M8
64M16
Speed Grade
tCK = 1.25ns, CL = 11
tCK = 1.25ns, CL = 10
tCK = 1.5ns, CL = 10
tCK = 1.5ns, CL = 9
tCK = 1.87ns, CL = 8
tCK = 1.87ns, CL = 7
-125
-125E
-15
-15E
-187
-187E
-
Configuration
MT41J Package Speed
Revision
Revision
:B/:D/:E/:F
:
{
Temperature
Commercial
Industrial temperature
Automotive temperature
None
IT
AT
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_TOC.fm - Rev G 2/09 EN 3©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
State Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Industrial Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Automotive Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Ball Assignments and Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Absolute Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Input/Output Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Electrical Specifications – IDD Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Electrical Characteristics – IDD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Electrical Specifications – DC and AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Input Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
AC Overshoot/Undershoot Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Slew Rate Definitions for Single-Ended Input Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Slew Rate Definitions for Differential Input Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
ODT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
ODT Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
ODT Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
ODT Timing Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Output Driver Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
34 Ohm Output Driver Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
34 Ohm Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
34 Ohm Driver Output Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Alternative 40 Ohm Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
40 Ohm Driver Output Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Output Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Reference Output Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Slew Rate Definitions for Single-Ended Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Slew Rate Definitions for Differential Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Speed Bin Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Command and Address Setup, Hold, and Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Data Setup, Hold, and Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
DESELECT (DES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
NO OPERATION (NOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
ZQ CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
ACTIVATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
DLL Disable Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_TOC.fm - Rev G 2/09 EN 4©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Table of Contents
Input Clock Frequency Change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Mode Register 0 (MR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Mode Register 1 (MR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Mode Register 2 (MR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Mode Register 3 (MR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
MODE REGISTER SET (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
ZQ CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
ACTIVATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PRECHARGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
SELF REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Extended Temperature Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
On-Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Functional Representation of ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Nominal ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Dynamic ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Synchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
ODT Off During READs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Asynchronous ODT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Synchronous to Asynchronous ODT Mode Transition (Power-Down Entry). . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Asynchronous to Synchronous ODT Mode Transition (Power-Down Exit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_LOF.fm - Rev G 2/09 EN 5©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
List of Figur es
List of Figures
Figure 1: 1Gb DDR3 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Figure 2: Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 3: 256 Meg x 4 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 4: 128 Meg x 8 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 5: 64 Meg x 16 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 6: 78-Ball FBGA – x4, x8 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 7: 86-Ball FBGA – x4, x8 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 8: 96-Ball FBGA – x16 Ball Assignments (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Figure 9: 78-Ball FBGA – x4, x8; “JP” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 10: 78-Ball FBGA – x4, x8; “HX” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 11: 86-Ball FBGA – x4, x8; “BY”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 12: 96-Ball FBGA – x16; “JT“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 13: 96-Ball FBGA – x16; “LA“. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 14: Thermal Measurement Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 15: Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 16: Overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 17: Undershoot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 18: Vix for Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 19: Single-Ended Requirements for Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 20: Definition of Differential AC-Swing and tDVAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 21: Nominal Slew Rate Definition for Single-Ended Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 22: Nominal Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# . . . . . . . . . . . . . . . . . .51
Figure 23: ODT Levels and I-V Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 24: ODT Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 25: tAON and tAOF Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 26: tAONPD and tAOFPD Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 27: tADC Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 28: Output Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 29: DQ Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 30: Differential Output Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 31: Reference Output Load for AC Timing and Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
Figure 32: Nominal Slew Rate Definition for Single-Ended Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Figure 33: Nominal Differential Output Slew Rate Definition for DQS, DQS#. . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Figure 34: Nominal Slew Rate and tVAC for tIS (Command and Address – Clock) . . . . . . . . . . . . . . . . . . . . . . . . .82
Figure 35: Nominal Slew Rate for tIH (Command and Address – Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Figure 36: Tangent Line for tIS (Command and Address – Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Figure 37: Tangent Line for tIH (Command and Address – Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Figure 38: Nominal Slew Rate and tVAC for tDS (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Figure 39: Nominal Slew Rate for tDH (DQ – Strobe). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
Figure 40: Tangent Line for tDS (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
Figure 41: Tangent Line for tDH (DQ – Strobe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Figure 42: Refresh Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
Figure 43: DLL Enable Mode to DLL Disable Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Figure 44: DLL Dis a ble Mode to DLL Enable Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 45: DLL Disable tDQSCK Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 46: Change Frequency During Precharge Power-Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Figure 47: Write Leveling Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 48: Write Leveling Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 49: Exit Write Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 50: Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 51: MRS-to-MRS Command Tim i ng ( tMRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure 52: MRS-to-nonMRS Command Timing (tMOD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 53: Mode Register 0 (MR0) Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 54: READ Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 55: Mode Register 1 (MR1) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 56: READ Latency (AL = 5, CL = 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_LOF.fm - Rev G 2/09 EN 6©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
List of Figur es
Figure 57: Mode Register 2 (MR2) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 58: CAS Write Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 59: Mode Register 3 (MR3) Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 60: Multipur pos e Register (MPR) Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 61: MPR System Read Calibration with BL8: Fixed Burst Order Single Readout. . . . . . . . . . . . . . . . . . . 124
Figure 62: MPR System Read Calibration with BL8: Fixed Burst Order, Back-to-Back Readout . . . . . . . . . . . 125
Figure 63: MPR System Read Calibration with BC4: Lower Nibble, Then Upper Nibble. . . . . . . . . . . . . . . . . . 126
Figure 64: MPR System Read Calibration with BC4: Upper Nibble, Then Lower Nibble. . . . . . . . . . . . . . . . . . 127
Figure 65: ZQ Calibration Timing (ZQCL and ZQCS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 66: Example: Meeting tRRD (MIN) and tRCD (MIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 67: Example: tFAW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 68: READ Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 69: Consecutive READ Bursts (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 70: Consecutive READ Bursts (BC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 71: Nonconsecutive READ Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 72: READ (BL8) to WRITE (BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 73: READ (BC4) to WRITE (BC4) OTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 74: READ to PRECHARGE (BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 75: READ to PRECHARGE (BC4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 76: READ to PRECHARGE (AL = 5, CL = 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 77: READ with Auto Precharge (AL = 4, CL = 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Figure 78: Data Output Timing – tDQSQ and Data Valid Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Figure 79: Data Strobe Timing – READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 80: Method for Calculating tLZ and tHZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Figure 81: tRPRE Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 82: tRPST Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Figure 83: tWPRE Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 84: tWPST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 85: Write Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 86: Consecutive WRITE (BL8) to WRITE (BL8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 44
Figure 87: Consecutive WRITE (BC4) to WRITE (BC4) via MRS or OTF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 88: Nonconsecutive WRITE to WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 89: WRITE (BL8) to READ (BL8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 90: WRITE to READ (BC4 Mode Register Setting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Figure 91: WRITE (BC4 OTF) to READ (BC4 OTF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Figure 92: WRITE (BL8) to PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 93: WRITE (BC4 Mo de Register Se tting) to PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Figure 94: WRITE (BC4 OTF) to PRECHARGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 95: Data Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Figure 96: Self Refresh Entry/Exit Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 97: Active Power-Down Entry and Exit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Figure 98: Precharge Power-Down (Fast-Exit Mode) Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 99: Precharge Power-Down (Slow-Exit Mode) Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Figure 100: Power-Down Entry After READ or READ with Auto Precharge (RDAP) . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 101: Power-Down Entry After WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 102: Power-Down Entry After WRITE with Auto Precharge (WRAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 103: REFRESH to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Figure 104: ACTIVATE to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 105: PRECHARGE to Power-Down Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 106: MRS Command to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 107: Power-Down Exit to Refresh to Power-Down Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Figure 108: RESET Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 109: On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 110: Dynamic ODT: ODT Asserted Before and After the WRITE, BC4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 111: Dynamic ODT: Without WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 112: Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8 . . . . 166
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_LOF.fm - Rev G 2/09 EN 7©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
List of Figur es
Figure 113: Dynamic ODT: ODT Pin Asserted with WRITE Co mmand for 6 Clock Cycles, BC4. . . . . . . . . . . . . 167
Figure 114: Dynamic ODT: ODT Pin Asserted with WRITE Co mmand for 4 Clock Cycles, BC4. . . . . . . . . . . . . 167
Figure 115: Synchronous ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 116: Synchronous ODT (BC4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 70
Figure 117: ODT During READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 72
Figure 118: Asynchronous ODT Timing with Fast ODT Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 119: Synchronous to Asynchronous Transition During Precharge Power-Down (DLL Off) Entry . . . . 176
Figure 120: Asynchronous to Synchronous Transition During Precharge Power-Down (DLL Off) Exit. . . . . . 178
Figure 121: Transition Period for Short CKE LOW Cycles with Entry and Exit Period Overlapping . . . . . . . . . 180
Figure 122: Transition Period for Short CKE HIGH Cycles with Entry and Exit Period Overlapping. . . . . . . . . 180
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_LOT.fm - Rev G 2/09 EN 8©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
List of Tables
List of Tables
Table 1: Key Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2: Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 4: 86-Ball FBGA – x4, x8 Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 5: 96-Ball FBGA – x16 Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 6: Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 7: Input/Output Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 8: Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 9: Timing Parameters used for IDD Measurements – Clock Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 10: IDD0 Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 11: IDD1 Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 12: IDD Measurement Conditions for Power-Down Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 13: IDD2N and IDD3N Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 14: IDD2NT Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 15: IDD4R Measurement Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 16: IDD4W Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 17: IDD5B Measurement Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 18: IDD Measurement Conditions for IDD6, IDD6ET, and IDD8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 19: IDD7 Measurement Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 20: IDD Maximum Limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 21: DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 22: DC Electrical Characteristics and Input Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 23: Input Switching Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 24: Control and Address Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 25: Clock, Data, Strobe, and Mask Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 26: Differential Input Operating Conditions (CK, CK# and DQS, DQS#) . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 27: Allowed Time Before Ringback (tDVAC) for CK - CK# and DQS - DQS#. . . . . . . . . . . . . . . . . . . . . . . . .48
Table 28: Single-Ended Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 29: Differential Input Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 30: On-Die Termination DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Table 31: RTT Effective Impedances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 32: ODT Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 33: ODT Temperature and Voltage Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 34: ODT Timing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 35: Reference Settings for ODT Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 36: 34Ω Driver Impedance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 37: 34Ω Driver Pull-Up and Pull-Down Impedance Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 38: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 39: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.575V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 40: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.425V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 41: 34Ω Output Driver Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 42: 34Ω Output Driver Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 43: 40Ω Driver Impedance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 44: 40Ω Output Driver Sensitivity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 45: 40Ω Output Driver Voltage and Temperature Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 46: Single-Ended Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 47: Differential Output Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 48: Single-Ended Output Slew Rate Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 49: Differential Output Slew Rate Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Table 50: DDR3-800 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
Table 51: DDR3-1066 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_LOT.fm - Rev G 2/09 EN 9©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
List of Tables
Table 52: DDR3-1333 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Table 53: DDR3-1600 Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Table 55: Command and Address Setup and Hold Values Referenced at 1 V/ns – AC/DC-Based. . . . . . . . . . .79
Table 56: Derating Values for tIS/tIH – AC175/DC100-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 57: Derating Values for tIS/tIH – AC150/DC100-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Table 58: Minimum Required Ti me tVAC Above VIH(AC) for Valid Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table 59: Data Setup and Hold Values at 1 V/ns (DQS, DQS# at 2 V/ns) – AC/DC-Based . . . . . . . . . . . . . . . . . .86
Table 60: Derating Values for tDS/tDH – AC175/DC100-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table 61: Derating Values for tDS/tDH – AC150/DC100-Based. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table 62: Required Time tVAC Above VIH(AC) (Below VIL[AC]) for Va lid Transit ion. . . . . . . . . . . . . . . . . . . . . . . .88
Table 63: Truth Table – Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Table 64: Truth Table – CKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Table 65: READ Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table 66: WRITE Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Table 67: READ Electrical Characteristics, DLL Disable Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 68: Write Leveling Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 69: Burst Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 70: MPR Functional Description of MR3 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 71: MPR Readouts and Burst Order Bit Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 72: Self Refresh Temperature and Auto Self Refresh Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 73: Self Refresh Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Table 74: Command to Power-Down Entry Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Table 75: Power-Down Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 76: Truth Table – ODT (Nominal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 77: ODT Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Table 78: Dynamic ODT Specific Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 63
Table 79: Mode Registers for Rtt_nom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 80: Mode Registers for Rtt_wr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 81: Timing Diagrams for Dynamic ODT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 82: Synchronous ODT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 84: ODT Parameters for Power-Down (DLL Off) Entry and Exit Transition Period . . . . . . . . . . . . . . . . 176
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 10 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
State Diagram
State Diagram
Figure 2: Simplified State Diagram
SRX = Self refresh exit
WRITE = WR, WRS4, WRS8
WRITE AP = WRAP, WRAPS4, WRAPS8
ZQCL = ZQ LONG CALIBRATION
ZQCS = ZQ SHORT CALIBRATION
Bank
active
ReadingWriting
Activating
Refreshing
Self
refresh
Idle
Active
power-
down
ZQ
calibration
From any
state
Power
appliedReset
procedure
Power
on Initialization MRS, MPR,
write
leveling
Precharge
power-
down
WritingReading
Automatic
sequence
Command
sequence
Precharging
READ
READ READ
READ AP
READ AP
READ AP
PRE, PREA
PRE, PREA PRE, PREA
WRITE
WRITE
CKE L CKE L
CKE L
WRITE
WRITE AP
WRITE AP
WRITE AP
PDE
PDE
PDX
PDX
SRX
SRE
REF
MRS
ACT
RESET
ZQCL
ZQCL/ZQCS
ACT = ACTIVATE
MPR = Multipurpose register
MRS = Mode register set
PDE = Power-down entry
PDX = Power-down exit
PRE = PRECHARGE
PREA = PRECHARGE ALL
READ = RD, RDS4, RDS8
READ AP = RDAP, RDAPS4, RDAPS8
REF = REFRESH
RESET = START RESET PROCEDURE
SRE = Self refresh entry
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 11 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Functional Description
Functional Description
The DDR3 SDRAM uses a double da ta rate ar chitectur e to ac hieve high -speed oper ation.
The double data rate architecture is an 8n-prefetch architecture with an interface
designed to transfe r two data wor ds per clock cy cle at the I/O pins . A singl e r ead or write
access for the DDR3 SDRA M c onsi s ts of a singl e 8n-bit-wide, one-clock-cycle data
transfer at the in ternal DRAM core and eight corresponding n-bit-wide, one-half-clock-
cycle data transfers at the I/O pins.
The differential data strobe (DQS, DQS#) is transmitted ext ernally, along with data, for
use in data capture at the DDR3 SDRAM input receiver. DQS is center -aligned with data
for WRITEs. The read data is transmitted by the DDR3 SDRAM and edge-aligned to the
data strobes.
The DDR3 SDRAM operates from a differential clock (CK and CK#). The crossing of CK
going HIGH and CK# going LOW is referred to as the positive edge of CK. Control,
command, and address signals are registered at every positive edge of CK. Input data is
registered on the first rising edge of DQS after the WRITE preamble, and output data is
referenced on the first rising edge of DQS after the READ preamble.
Read and write accesses to the DDR3 SDRAM are burst-oriented. Accesses start at a
selected location and continue for a pr ogramme d number of locations in a progr ammed
sequence . A ccesses b egin with the r egistr ation of an ACTIVATE command, which is then
followed by a READ or WRITE command. The address bits registered coincident with the
ACTIVATE command are used to select the bank and row to be accessed. The address
bits registered coincident with the READ or WRITE commands are used to select the
bank and the starting column location for the burst access.
DDR3 SDRA M use READ and WRITE BL8 and BC4. An auto precharge function may be
enabled to provide a self-timed row precharge that is initiated at the end of the burst
access.
As with standard DDR SDRAM, the pipelined, multibank architecture of DDR3 SDRAM
allows for concurrent operation, thereby providing high bandwidth by hiding row
precharge and activation time.
A self refresh mode is provided, along with a power-saving, power-down mode.
Industrial Temperature
The industrial temperature (IT) device requires the case temperature not exceed –40°C
or +95°C. JEDEC specifications require the refresh rate to double when T C exceeds
+85°C; this also requires use of the high-temperature se lf refresh option. Additionally,
ODT resistance and the input/output impedance must be derated when the TC is < 0°C
or > +95°C.
Automotive Temperature
The automotive temperature (AT) device requires the case temperature not exceed
–40°C or +105°C. JEDEC specifications require the refresh ra te to double when TC
exceeds +85°C; this also requires use of the high-temperature self refresh option. Addi-
tionally, ODT resistance and the input/output impedance must be derated when the TC
is < 0°C or > +95°C.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 12 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Functional Description
General Notes The functionality and the timing specifications discussed in this data sheet are for the
DLL enable mode of operation (normal operatio n).
Throughout the data sheet, the various figures and text refer to DQs as “DQ.” The DQ
term is to be interpreted as any and all DQ collectively, unless specifically stated
otherwise.
The terms “DQS” and “CK” found throughout the data sheet are to be interpreted as
DQS, DQS# and CK, CK# respectively, unless specifically stated otherwise.
Complete functionality may be described throughout the entire document, and any
page or diagram may have been si mplified to convey a topic and may not be inclusiv e
of all requirements.
Any specific requirement takes precedence over a general statement.
Any functionality not specifically stated herewithin is considered undefined, illegal,
and not supported and can result in unknown operation.
Row addres sing is denoted as A[n:0](1Gb: n = 12 [x16]; 1Gb: n = 13 [x4, x8]).
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 13 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Functional Block Diagrams
Functional Block Diagrams
DDR3 SDRAM is a high-speed, CMOS dynamic random access memory. It is internally
configured as an 8-bank DRAM.
Figure 3: 256 Meg x 4 Functional Block Diagram
Bank 5
Bank 6
Bank 7
Bank 4
Bank 7
Bank 4
Bank 5
Bank 6
13 Row-
address
MUX
Control
logic
Column-
address
counter/
latch
Mode registers
11
Command
decode
A[13:0]
BA[2:0]
14
Address
register
17
256
(x32)
8,192
I/O gating
DM mask logic
Column
decoder
Bank 0
memory
array
(16,384 x 256 x 32)
Bank 0
row-
address
latch
and
decoder
16,384
Sense amplifiers
Bank
control
logic
17
Bank 1
Bank 2
Bank 3
14
8
3
3
Refresh
counter 4
32
32
32
DQS, DQS#
Columns 0, 1, and 2
Columns 0, 1, and 2
ZQCL, ZQCS
To pull-up/pull-down
networks
READ
drivers DQ[3:0]
READ
FIFO
and
data
MUX
Data
4
3
Bank 1
Bank 2
Bank 3
DM
DM
CK, CK#
DQS, DQS#
ZQ CAL
CS#
ZQ
RZQ
CK, CK#
RAS#
WE#
CAS#
ODT
CKE
RESET#
CK, CK#
DLL
DQ[3:0]
(1 . . . 4)
(1, 2)
sw1 sw2
VDDQ/2
RTT_NOM RTT_WR
sw1 sw2
VDDQ/2
RTT_NOM RTT_WR
sw1 sw2
VDDQ/2
RTT_NOM RTT_WR
OTF
BC4 (burst chop)
BC4
Column 2
(select upper or
lower nibble for BC4)
Data
interface
WRITE
drivers
and
input
logic
ODT
control
VSSQA12
OTF
BC4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 14 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Functional Block Diagrams
Figure 4: 128 Meg x 8 Functional Block Diagram
Figure 5: 64 Meg x 16 Functional Block Diagram
Bank 5
Bank 6
Bank 7
Bank 4
Bank 7
Bank 4
Bank 5
Bank 6
13 Row-
address
MUX
Control
logic
Column-
address
counter/
latch
Mode registers
10
Command
decode
A[13:0]
BA[2:0]
14
Address
register
17
8,192
I/O gating
DM mask logic
Column
decoder
Bank 0
memory
array
(16,384 x 128 x 64)
Bank 0
row-
address
latch
and
decoder
16,384
Sense amplifiers
Bank
control
logic
17
Bank 1
Bank 2
Bank 3
14
7
3
3
Refresh
counter 8
64
64
64
DQS, DQS#
Columns 0, 1, and 2
Columns 0, 1, and 2
ZQCL, ZQCS
To ODT/output drivers
READ
drivers DQ[7:0]
READ
FIFO
and
data
MUX
Data
8
3
Bank 1
Bank 2
Bank 3
DM/TDQS
(shared pin)
TDQS#
CK, CK#
DQS, DQS#
ZQ CAL
ZQ
RZQ
CK, CK#
RAS#
WE#
CAS#
CS#
ODT
CKE
RESET#
CK, CK#
DLL
DQ[7:0]
DQ8 (1 . . . 8)
(1, 2)
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
BC4 (burst chop)
BC4BC4
WRITE
drivers
and
input
logic
Data
interface
Column 2
(select upper or
lower nibble for BC4)
(128
x64)
ODT
control
V
SS
QA12
OTF
OTF
Bank 5
Bank 6
Bank 7
Bank 4
Bank 7
Bank 4
Bank 5
Bank 6
13 Row-
address
MUX
Control
logic
Column-
address
counter/
latch
Mode registers
10
Command
decode
A[12:0]
BA[2:0]
13
Address
register
16
(128
x128)
16,384
I/O gating
DM mask logic
Column
decoder
Bank 0
memory
array
(8,192 x 128 x 128)
Bank 0
row-
address
latch
and
decoder
8,192
Sense amplifiers
Bank
control
logic
16
Bank 1
Bank 2
Bank 3
13
7
3
3
Refresh
counter
16
128
128
128
LDQS, LDQS#, UDQS, UDQS#
Column 0, 1, and 2
Columns 0, 1, and 2
ZQCL, ZQCS
To ODT/output drivers
BC4
READ
drivers DQ[15:0]
READ
FIFO
and
data
MUX
Data
16
BC4 (burst chop)
3
Bank 1
Bank 2
Bank 3
LDM/UDM
CK, CK#
LDQS, LDQS#
UDQS, UDQS#
ZQ CAL
ZQ
RZQ
ODT
CKE
CK, CK#
RAS#
WE#
CAS#
CS#
RESET#
CK, CK#
DLL
DQ[15:0]
(1 . . . 16)
(1 . . . 4)
(1, 2)
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
BC4
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
sw1 sw2
V
DD
Q/2
R
TT
_
NOM
R
TT
_
WR
Column 2
(select upper or
lower nibble for BC4)
Data
interface
WRITE
drivers
and
input
logic
ODT
control
V
SS
QA12
OTF
OTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 15 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Ball Assignments and Descriptions
Figure 6: 78-Ball FBGA – x4, x8 Ball Assignments (Top View)
Notes: 1. Ball des criptions listed in Ta ble 3 on page 18 ar e listed as “x4, x8” if unique; otherwise, x4
and x8 are the same.
2. A comma separates the configuration; a slash defines a selectable function.
Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined
in Table 3 on page 18).
1234 67895
VSS
VSS
VDDQ
VSSQ
VREFDQ
NC
ODT
NC
VSS
VDD
VSS
VDD
VSS
VDD
VSSQ
DQ2
NF, DQ6
VDDQ
VSS
VDD
CS#
BA0
A3
A5
A7
RESET#
NC
DQ0
DQS
DQS#
NF, DQ4
RAS#
CAS#
WE#
BA2
A0
A2
A9
A13
NF, NF/TDQS#
DM, DM/TDQS
DQ1
VDD
NF, DQ7
CK
CK#
A10/AP
NC
A12/BC#
A1
A11
NC
VDD
VDDQ
VSSQ
VSSQ
VDDQ
NC
CKE
NC
VSS
VDD
VSS
VDD
VSS
VSS
VSSQ
DQ3
VSS
NF, DQ5
VSS
VDD
ZQ
VREFCA
BA1
A4
A6
A8
A
B
C
D
E
F
G
H
J
K
L
M
N
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 16 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Figure 7: 86-Ball FBGA – x4, x8 Ball Assignments (Top View)
Notes: 1. Ball des criptions listed in Ta ble 4 on page 20 ar e listed as “x4, x8” if unique; otherwise, x4
and x8 are the same.
2. A comma separates the configuration; a slash defines a selectable function.
Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined
in Table 4 on page 20).
1234 67895
NC
V
SS
V
SS
V
DD
Q
V
SS
Q
V
REF
DQ
NC
ODT
NC
V
SS
V
DD
V
SS
V
DD
V
SS
NC
V
DD
V
SS
Q
DQ2
NF, DQ6
V
DD
Q
V
SS
V
DD
CS#
BA0
A3
A5
A7
RESET#
NC
NC
DQ0
DQS
DQS#
NF, DQ4
RAS#
CAS#
WE#
BA2
A0
A2
A9
A13
NC
NC
NF, NF/TDQS#
DM, DM/TDQS
DQ1
V
DD
NF, DQ7
CK
CK#
A10/AP
NC
A12/BC#
A1
A11
NC
NC
NC
V
DD
V
DD
Q
V
SS
Q
V
SS
Q
V
DD
Q
NC
CKE
NC
V
SS
V
DD
V
SS
V
DD
V
SS
NC
V
SS
V
SS
Q
DQ3
V
SS
NF, DQ5
V
SS
V
DD
ZQ
V
REF
CA
BA1
A4
A6
A8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 17 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Figure 8: 96-Ball FBGA – x16 Ball Assignments (Top View)
Notes: 1. Ball des criptions listed in Ta ble 5 on page 22 ar e listed as “x4, x8” if unique; otherwise, x4
and x8 are the same.
2. A comma separates the configuration; a slash defines a selectable function.
Example D7 = NF, NF/TDQS#. NF applies to the x4 configuration only. NF/TDQS# applies to
the x8 configuration only—selectable between NF or TDQS# via MRS (symbols are defined
in Table 5 on page 22).
1234 67895
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
VDDQ
VSSQ
VDDQ
VSSQ
VSS
VDDQ
VSSQ
VREFDQ
NC
ODT
NC
VSS
VDD
VSS
VDD
VSS
DQ13
VDD
DQ11
VDDQ
VSSQ
DQ2
DQ6
VDDQ
VSS
VDD
CS#
BA0
A3
A5
A7
RESET#
DQ15
VSS
DQ9
UDM
DQ0
LDQS
LDQS#
DQ4
RAS#
CAS#
WE#
BA2
A0
A2
A9
NC
DQ12
UDQS#
UDQS
DQ8
LDM
DQ1
VDD
DQ7
CK
CK#
A10/AP
NC
A12/BC#
A1
A11
NC
VDDQ
DQ14
DQ10
VSSQ
VSSQ
DQ3
VSS
DQ5
VSS
VDD
ZQ
VREFCA
BA1
A4
A6
A8
VSS
VSSQ
VDDQ
VDD
VDDQ
VSSQ
VSSQ
VDDQ
NC
CKE
NC
VSS
VDD
VSS
VDD
VSS
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 18 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Ta ble 3: 78-Ball FBGA – x4, x8 Ball Descriptions
Ball Assignments Symbol Type Description
K3, L7, L3, K2,
L8, L2, M8, M2,
N8, M3, H7,
M7, K7,
N3
A0, A1, A2, A3,
A4, A5, A6, A7,
A8, A9, A10/AP,
A11, A12/BC#,
A13
Input Address inputs: Provide the row address for ACTIVATE commands,
and the column address and auto precharge bit (A10) for READ/
WRITE comm ands, to se le ct one location out of the memor y ar r ay in
the respective bank. A10 sampled during a PRECHARGE command
determines whether the PRECHARGE applies to one bank (A10 LOW ,
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs
also provide the op-code during a LOAD MODE command. Address
inputs are referenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE
commands to determine whether burst chop (on-the-fly) will be
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).
See Table 63 on page 93.
J2, K8, J3 BA0, BA1, BA2 Input Bank address inputs: BA[2:0] define the bank to which an
ACTIVATE, READ, WRITE, or PRECHARGE command is bein g ap pl ied.
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is
loaded during the LOAD MODE command. BA[2:0] are referenced to
VREFCA.
F7, G7 CK, CK# Input Clock: CK and CK# are differential clock inputs. All control and
address input signals are sample d on the crossing of the positive
edge of CK and the negative edge of CK#. Output data strobe (DQS,
DQS#) is referenced to the crossings of CK and CK#.
G9 CKE Input Clock enable: CKE enables (registered HIGH) and disables
(registered LOW) internal circuitry and cl ocks on the DRAM . Th e
specific ci rcuitry that is enabled/disabled is dependent upon the
DDR3 SDRAM configuration and operating mode. Taking CKE LOW
provides PRECHARGE power-down and SELF REFRESH operations (all
banks idle), or active power-down (row active in any bank). CKE is
synchronous for power-down entry and exit and for self refresh
entry. CKE is asynchronous for self refresh exit. Input buffers
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during
power-down. Input buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.
H2 CS# Input Chip select: CS# enables (registered LOW) and disables (registered
HIGH) the command decoder. All commands are masked when CS# is
registered HIGH. CS# provides for external rank selection on systems
with multiple ranks. CS# is considered part of the command code.
CS# is referenced to VREFCA.
B7 DM Input Input data mask: DM is an input mask signal for write data. Input
data is masked when DM is sampled HIGH along with the input data
during a write access. Although the DM ball is input-only, the DM
loading is designed to match that of the DQ and DQS balls. DM is
referenced to VREFDQ. DM has an optional use as TDQS on the x8.
G1 ODT Input On-die termination: ODT enables (registered HIGH) and disables
(registered LOW) termination resistance internal to the DDR3
SDRAM. When enabled in normal operation, ODT is only applied to
each of the following balls: DQ[7: 0], DQS, DQS#, and DM for the x8;
DQ[3:0], DQS, DQS#, and DM for the x4. The ODT input is ignored if
disabled via the LOAD MODE command. ODT is referenced to
VREFCA.
F3, G3, H3 RAS#, CAS#, WE# Input Command inputs: RAS#, CAS#, and WE# (along with CS#) define
the command being entered and are referenced to VREFCA.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 19 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
N2 RESET# Input Reset: RESET# is an active LOW CMOS input referenced to VSS. The
RESET# input receiver is a CMOS inpu t defined as a rail-to-rail signal
with DC HIGH 0.8 × VDD and DC LOW 0.2 × VDDQ. RESET#
assertion and desertion are asynchronous.
B3, C7,
C2, C8 DQ0, DQ1,
DQ2, DQ3 I/O Data input/output: Bidirectio nal data bus fo r the x4 config uration.
DQ[3:0] are referenced to VREFDQ.
B3, C7, C2,
C8, E3, E8,
D2, E7
DQ0, DQ1, DQ2,
DQ3, DQ4, DQ5,
DQ6, DQ7
I/O Data input/output: Bidirectio nal data bus fo r the x8 config uration.
DQ[7:0] are referenced to VREFDQ.
C3, D3 DQS, DQS# I/O Data strobe: Output with read data. Edge-aligned with read data.
Input with write data. Center-aligned to write data.
B7, A7 TDQS, TDQS# Output Termination data strobe: Applies to the x8 configuration only.
When TDQS is enabled, DM is disabled, and the TDQS and TDQS#
balls provide termination resistance.
A2, A9, D7, G2, G8,
K1, K9, M1, M9 VDD Supply Power supply: 1.5V ±0.075V.
B9, C1, E2, E9 VDDQ Supply DQ power supply: 1.5V ±0.075V. Isolated on the device for
improved noise immunity.
J8 VREFCA Supply Reference voltage for control, command, and address: VREFCA
must be maintained at all times (including self refresh) for proper
device operation.
E1 VREFDQ Supply Reference voltage for data: V REFDQ must be maintained at all
times (excluding self refresh) for proper device operation.
A1, A8, B1, D8, F2,
F8, J1, J9, L1, L9, N1,
N9
VSS Supply Ground.
B2, B8, C9, D1, D9 VSSQ Supply DQ ground: Isolated on the device for improved noise immunity.
H8 ZQ Reference External refe rence ball for output drive calibration: This ball is
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.
A3, J7, N7, F9, H1, F1,
H9 NC No connect: These balls should be left unconnected (the ball has no
connection to the DRAM or to other balls).
A7, D2, E3, E7, E8 NF No function: When configured as a x4 device, these balls are NF.
When configured as a x8 device, these balls are defined as TDQS#,
DQ[7:4].
Table 3: 78-Ball FBGA – x4, x8 Ball Descriptions (continued)
Ball Assignments Symbol Type Description
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 20 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Ta ble 4: 86-Ball FBGA – x4, x8 Ball Descriptions
Ball Assignments Symbol Type Description
N3, P7, P3, N2,
P8, P2, R8, R2,
T8, R3,
L7,
R7, N7,
T3
A0, A1, A2, A3,
A4, A5, A6, A7,
A8, A9
A10/AP,
A11, A12/BC#,
A13
Input Address inputs: Provide the row address for ACTIVATE commands,
and the column address and auto precharge bit (A10) for READ/
WRITE commands, to select one location out of the memory array in
the respective bank. A10 sampled during a PRECHARGE command
determines whether the PRECHARGE applies to one bank (A10 LOW ,
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs
also provide the op-code during a LOAD MODE command. Address
inputs are re f erenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE
commands to determine whether burst chop (on-the-fly) will be
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop).
See Table 63 on page 93.
M2, N8, M3 BA0, BA1, BA2 Input Bank address inputs: BA[2:0] define the ba nk to which an
ACTIVATE, READ, WRITE, or PRECHARGE command is being applied.
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is
loaded during the LOAD MODE command. BA[2:0] are referenced to
VREFCA.
J7, K7 CK, CK# Input Clock: CK and CK# are differential clock inpu ts. All control and
address input signals are sampled on the crossing of the positive
edge of CK and the negative ed ge of CK#. Output data strobe (DQS,
DQS#) is referenced to the crossings of CK and CK#.
K9 CKE Input Clock enable: CKE enables (registered HIGH) and disables
(registered LOW) internal circuitry and clocks on the DRAM. The
specific circuitry that is enabled/disabled is dependent upon the
DDR3 SDRAM configuration and operating mode. Taking CKE LOW
provides PRECHARGE power-down and SELF REFRESH operations (all
banks idle), or active power-down (row active in any bank). CKE is
synchronous for power-down entry and exit and for self refresh
entry. CKE is asynchronous for self refresh exit. Input buffers
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during
power-down. Input buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.
L2 CS# Input Chip select: CS# enables (registered LOW) and disables (registered
HIGH) the command decoder. All commands are masked when CS# is
registered HIGH. CS# provides for external rank selection on systems
with multiple ranks. CS# is considered part of the command code.
CS# is referenced to VREFCA.
E7 DM Input Input data mask: DM is an input mask signal for write data. Input
data is masked when DM is sampled HIGH along with the input data
during a write access. Although the DM ball is input-only, the DM
loading is designed to match that of the DQ and DQS balls. DM is
referenced to VREFDQ. DM has an optional use as TDQS on the x8.
K1 ODT Input On-die termination: ODT enables (registered HIGH) and disables
(registered LOW) termination resistance internal to the DDR3
SDRAM. When enabled in normal operation, ODT is only applied to
each of the following balls: DQ[7:0], DQS, DQS#, and DM for the x8;
DQ[3:0], DQS, D QS# , and DM for the x4. The ODT input is ignored if
disabled via the LOAD MODE command. ODT is referenced to
VREFCA.
J3, K3, L3 RAS#, CAS#, WE# Input Command inputs: RAS#, CAS#, and WE# (along with CS#) define
the command being entered and are referenced to VREFCA.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 21 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
T2 RESET# Input Reset: RESET# is an active LOW CMOS input referenced to VSS. The
RESET# input receiver is a CMOS input defined as a rail-to-rail sign al
with DC HIGH 0.8 × VDD and DC LOW 0. 2 × VDDQ. RESET#
assertion and desertion are asynchronous.
E3, F7,
F2, F8 DQ0, DQ1,
DQ2, DQ3 I/O Data input/output: Bidirectional data bus for the x4 configuration.
DQ[3:0] are re f e re nced to VREFDQ.
E3, F7, F2,
F8, H3, H8,
G2, H7
DQ0, DQ1, DQ2,
DQ3, DQ4, DQ5,
DQ6, DQ7
I/O Data input/output: Bidirectional data bus for the x8 configuration.
DQ[7:0] are re f e re nced to VREFDQ.
F3, G3 DQS, DQS# I/O Data strobe: Output with read data. Edge-aligned with read data.
Input with write data. Center-aligned to write data.
E7, D7 TDQS, TDQS# Output Termination data strobe: Applies to the x8 configurati on only.
When TDQS is enabled, DM is disabled, and the TDQS and TDQS#
balls provide termination resistance.
D2, D9, G7, K2, K8,
N1, N9, R1, R9 VDD Supply Power supply: 1.5V ±0.07 5V.
E9, F1, H2, H9 VDDQ Supply DQ power supply: 1.5V ±0.075V. Isolated on the device for
improved noise immunity.
M8 VREFCA Supply Reference voltage for control, command, and address: VREFCA
must be maintained at all times (including self refresh) for proper
device operation.
H1 VREFDQ Supply Reference voltage for data : VREFDQ must be maintained at all
times (excludi ng self refresh) for pr oper device operation.
D1, D8, E1, G8, J2, J8,
M1, M9, P1, P9, T1,
T9
VSS Supply Ground.
E2, E8, F9, G1, G9 VSSQ Supply DQ ground: Isolated on the device for improved noise immunity.
L8 ZQ Reference External reference ball for output drive calibration: This ball is
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.
A1, A3, A7, A9, D3,
J1, J9, L1, L9, M7, T7,
W1, W3, W7, W9
NC No connec t: These balls should be left unconnected (the ball has no
connection to the DRAM or to other balls).
D7, G2, H3, H7, H8 NF No function: When configured as a x4 device, these balls are NF.
When configured as a x8 device, these balls are defined as TDQS#,
DQ[7:4].
Table 4: 86-Ball FBGA – x4, x8 Ball Descriptions (continued)
Ball Assignments Symbol Type Description
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 22 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
Table 5: 96-Ball FBGA – x16 Ball Descriptions
Ball Assignments Symbol Type Description
N3, P7, P3, N2,
P8, P2, R8, R2,
T8, R3,
L7,
R7, N7
A0, A1, A2, A3,
A4, A5, A6, A7,
A8, A9
A10/AP,
A11, A12/BC#
Input Address inputs: Provide the row address for ACTIVATE commands,
and the colu mn address and aut o precharge bit (A10) for REA D /
WRITE commands, to select one location out of the memory array in
the respective bank. A10 sampled during a PRECHARGE command
determines whether the PRECHARGE applies to one bank (A10 LOW ,
bank selected by BA[2:0]) or all banks (A10 HIGH). The address inputs
also provide the op-cod e du ring a LOAD MODE command. Address
inputs are referenced to VREFCA. A12/BC#: When enabled in the
mode register (MR), A12 is sampled during READ and WRITE
commands to determine whether burst chop (on-the-fly) will be
performed (HIGH = BL8 or no burst chop, LOW = BC4 burst chop). See
Table 63 on page 93.
M2, N8, M3 BA0, BA1, BA2 Input Bank address inputs: BA[2:0] define the bank to which an
ACTIVATE, READ, WRITE, or PRECHAR GE command is being ap plied.
BA[2:0] define which mode register (MR0, MR1, MR2, or MR3) is
loaded during the LOAD MODE command. BA[2:0] are referenced to
VREFCA.
J7, K7 CK, CK# Input Clock: CK and CK# are diff erential cl oc k in puts. All control and
address input signals are sampled on the crossing of the positive
edge of CK and the negative ed ge of CK#. Output data strobe (DQS,
DQS#) is referenced to the crossings of CK and CK#.
K9 CKE Input Clock enable: CKE enables (registered HIGH) and disables
(registered LOW) internal circuitry and clocks on the DRAM. The
specific circuitry that is enabled/disabled is dependent upon the
DDR3 SDRAM configuration an d operating mode. Taking CKE LOW
provides PRECHARGE power-down an d SELF REFRESH operations (all
banks idle),or active power-down (row active in any bank). CKE is
synchronous for power-down entry and exit and for self refresh
entry. CKE is asynchronous for self refresh exit. Input buffers
(excluding CK, CK#, CKE, RESET#, and ODT) are disabled during
power-down. Inpu t buffers (excluding CKE and RESET#) are disabled
during SELF REFRESH. CKE is referenced to VREFCA.
L2 CS# Input Chip select: CS# enables (registered LOW) and di sables (registered
HIGH) the command decoder. All commands are masked when CS# is
registered HIGH. CS# provides for external rank selection on systems
with multiple ranks. CS# is considered part of the command code.
CS# is referenced to VREFCA.
E7 LDM Input Input data mask: LDM is a lower-byte, input mask signal for write
data. Lowe r-byte input data is masked when LDM is sampled HIGH
along with the inpu t data du ri ng a write access. Although the LDM
ball is input-only, the LDM loading is designed to match that of the
DQ and DQS balls. LDM is referenced to VREFDQ.
K1 ODT Input On-die termination: ODT enables (registered HIGH) and disables
(registered LOW) termination resistance internal to the DDR3
SDRAM. When enabled in normal operation, ODT is only applied to
each of the following balls: DQ[15:0], LDQS, LDQS#, UDQS, UDQS#,
LDM, and UDM for the x16; DQ0[7:0], DQS, DQS#, DM/TDQS, and NF/
TDQS# (when TDQS is enabled) for the x8; DQ[3:0], DQS, DQ S# , an d
DM for the x4. The ODT input is ignored if disabled via the LOAD
MODE command. ODT is referenced to VREFCA.
J3, K3, L3 RAS#, CAS#, WE# Input Command inputs: RAS#, CAS#, and WE# (along with CS#) define
the command being entered and are referenced to VREFCA.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 23 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Ball Assignments and Descriptions
T2 RESET# Input Reset: RESET# is an active LOW CMOS input referenced to VSS. The
RESET# input receiver is a CMOS input defined as a rail-to-rail sign al
with DC HIGH 0.8 × VDD and DC LOW 0. 2 × VDDQ. RESET#
assertion and desertion are asynchronous.
D3 UDM Input Input data mask: UDM is an upper-byte, input mask signal for
write data. Upper-byte input data is masked when UDM is sampled
HIGH along with that in pu t data during a WRITE access. Although
the UDM ball is input-only, the UDM loading is designed to match
that of the DQ and DQS balls. UDM is referenced to VREFDQ.
E3, F7, F2,
F8, H3, H8,
G2, H7
DQ0, DQ1, DQ2,
DQ3, DQ4, DQ5,
DQ6, DQ7
I/O Data input/output: Lower byte of bidirectional data bus for the x16
configuration. DQ[7:0] are refe renced to VREFDQ.
D7, C3,
C8, C2,
A7, A2,
B8, A3
DQ8, DQ9,
DQ10, DQ11,
DQ12, DQ13,
DQ14, DQ15
I/O Data input/output: Upper byte of bidirectional data bus for the x16
configuration. DQ[15:8] are refere nced to VREFDQ.
F3, G3 LDQS, LDQS# I /O Lower byte data strobe: Output with read data. Edge-aligned
with read data. Input with write data. Center-aligned to write data.
C7, B7 UDQS, UDQS# I/O Upper byte data strobe: Output with read data. Edge-aligned with
read data. Input with write data. DQS is center-aligned to write data.
B2, D9, G7, K2, K8,
N1, N9, R1, R9 VDD Supply Pow er supply: 1.5V ±0.075V.
A1, A8, C1, C9, D2,
E9, F1, H2, H9 VDDQ Supply DQ power supply: 1.5V ±0.075V. Is olated on the device for
improved noise immunity.
M8 VREFCA Supply Reference voltage for control, command, and address: VREFCA
must be maintained at all times (including self refresh) for proper
device operation.
H1 VREFDQ Supply Reference voltage for data : VREFDQ must be maintained at all
times (excludi ng self refresh) for pr oper device operation.
A9, B3, E1, G8, J2, J8,
M1, M9, P1, P9, T1,
T9
VSS Supply Ground.
B1, B9, D1, D8, E2,
E8, F9, G1, G9 VSSQ Supply DQ gr ound: Isolated on the device for improved noise immunity.
L8 ZQ Reference External r ef erence ball for output drive calibration: This ball is
tied to an external 240Ω resistor (RZQ), which is tied to VSSQ.
J1, J9, L1, L9, M7, T3,
T7 NC No connect: These balls should be left unconnec ted (the ball has no
connection to the DRAM or to other balls).
Table 5: 96-Ball FBGA – x16 Ball Descriptions (continued)
Ball Assignments Symbol Type Description
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 24 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Package Dimensions
Package Dimensions
Figure 9: 78-Ball FBGA – x4, x8; “JP”
Notes: 1. All dimensions are in millimeters.
Ball A1 ID
1.2 MAX
0.8
TYP
0.8 ±0.1
Seating
plane
A
9.6
CTR
6.4 CTR
0.12 A
78X Ø0.45
11.5 ±0.15
Ball A1 ID
0.8 TYP
8 ±0.15
0.25 MIN
9 8 7 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
Dimensions apply
to solder balls post-
reflow on Ø0.33
NSMD ball pads.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 25 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Package Dimensions
Figure 10: 78-Ball FBGA – x4, x8; “HX”
Notes: 1. All dimensions are in millimeters.
Ball A1 ID
Seating
plane
0.12 AA
0.8 ±0.1
1.2 MAX
0.25 MIN
9 ±0.15
Ball A1 ID
9.6
CTR
Solder ball
material: SAC305.
Dimensions apply to
solder balls post-
reflow on Ø0.33
NSMD ball pads.
78X Ø0.45
11.5 ±0.15
0.8 TYP
0.8 TYP
6.4 CTR
9 8 7 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 26 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Package Dimensions
Figure 11: 86-Ball FBGA – x4, x8; “BY”
Notes: 1. All dimensions are in millimeters.
Ball A1 ID
Seating
plane
0.8 ±0.1
Dimensions
apply to solder
balls post-reflow
on Ø0.33 NSMD
ball pads.
0.12 A A
15.5 ±0.15
2.4 TYP
14.4 CTR
Ball A1 ID
86X Ø0.45
1.2 MAX
0.25 MIN
9 ±0.15
0.8 TYP
0.8 TYP
6.4 CTR
9 8 7 3 2 1
A
D
E
F
G
H
J
K
L
M
N
P
R
T
W
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 27 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Package Dimensions
Figure 12: 96-Ball FBGA – x16; “JT“
Notes: 1. All dimensions are in millimeters.
Ball A1 ID
1.2 MAX
0.8 TYP
8 ±0.15
0.8 ±0.1
Seating
plane
A
12 CTR
6.4 CTR
0.12 A
96X Ø0.45
Solder ball
material: SAC305.
Dimensions apply
to solder balls post-
reflow on Ø0.4
SMD ball pads.
14 ±0.15
Ball A1 ID
0.8 TYP
0.25 MIN
9 8 7 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 28 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Package Dimensions
Figure 13: 96-Ball FBGA – x16; “LA“
Notes: 1. All dimensions are in millimeters.
Ball A1 ID
Seating
plane
0.8 ±0.1
Solder ball
material: SAC305.
Dimensions
apply to solder
balls post-reflow
on Ø0.33 NSMD
ball pads.
0.12 AA
15.5 ±0.15
0.8 TYP
1.2 MAX
12 CTR
Ball A1 ID
0.8 TYP
9 ±0.15
0.25 MIN
6.4 CTR
96X Ø0.45
9 8 7 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 29 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications
Electrical Specifications
Absolute Ratings S tresses greater than those li sted in Table 6 may cause permanent damage to the devi ce.
This is a stress rating only, and functional operation of the device at these or any other
conditions outside those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may
adversely affect reliability.
Notes: 1. VDD and VDDQ must be within 300mV of each other at all times, and VREF must not be
greater than 0.6 × VDDQ. When VDD and VDDQ are less than 500mV, VREF may be 300mV.
2. MAX operating case temperature. TC is measured in the center of the pac kage (see
Figure 14 on page 30).
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during
operation.
Input/Output Capacitance
Notes: 1. VDD = +1.5V ±0.075mV, VDDQ = VDD, VREF = VSS, f = 100 MHz, TC = 25°C.
VOUT(DC)=0.5×VDDQ, VOUT (peak-to-peak) = 0.1V.
2. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading.
3. Includes TDQS, TDQS#. CDDQS is for DQS vs. DQS# and TDQS vs. TDQS# separately.
4. CDIO = CIO (DQ) - 0.5 × (CIO [DQS] + CIO [DQS#]).
5. Excludes CK, CK#; CTRL = ODT, CS#, and CKE; CMD = RAS#, CAS#, and WE#; ADDR = A[n:0],
BA[2:0].
6. CDI_CTRL = CI (CTRL) - 0.5 × (CCK [CK] + CCK [CK#]).
7. CDI_CMD_ADDR = CI (CMD_ADDR) - 0.5 × (CCK [CK] + CCK [CK#]).
Ta ble 6: Absolute Maximum Ratings
Symbol Parameter Min Max Units Notes
VDD VDD supply voltage relative to VSS –0.4 1.975 V 1
VDDQVDD supply voltage relative to VSSQ–0.4 1.975 V
VIN, VOUT Voltage on any pin relat ive to VSS –0.4 1.975 V
TCOperating case temperature 0 95 °C 2, 3
TSTG Storage temperature –55 150 °C
Ta ble 7: Input/Output Capacitance
Note 1 applies to the entire table
Capacitance Parameters Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
CK and CK# CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 pF
ΔC: CK to CK# CDCK 00.1500.1500.1500.15pF
Single-end I/ O: DQ, DM CIO 1.5 3.0 1.5 3.0 1.5 2.5 1.5 2.3 pF 2
Differential I/O:
DQS, DQS#, TDQS, TDQS# CIO 1.5 3.0 1.5 3.0 1.5 2.5 1.5 2.3 pF 3
ΔC: DQS to DQS#, TDQS, TDQS# CDDQS 0 0.2 0 0.2 00.1500.15pF 3
ΔC: DQ to DQS CDIO 0.50.3–0.50.3–0.50.3–0.50.3 pF 4
Inputs (CTRL, CMD, ADDR) CI0.75 1.4 0.75 1.35 0.75 1.3 0.75 1.3 pF 5
ΔC: CTRL to CK CDI_CTRL 0.50.3–0.50.3–0.40.2–0.40.2 pF 6
ΔC: CMD_ADDR to CK CDI_CMD_ADDR 0.50.5–0.50.5–0.40.4–0.40.4 pF 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 30 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Thermal Characteristics
Thermal Characteristics
Notes: 1. MAX operating case temperature. TC is measured in the center of the package (see
Figure 14).
2. A thermal solution must be designed to ensure the DRAM device does not exceed the maxi-
mum TC during operation.
3. Device functionality is not guaranteed if the DRAM device exceeds the maximum TC during
operation.
4. If TC exceeds 85°C, the DRAM must be refreshed externally at 2X refresh, which is a 3.9µs
interval refresh rate. The use of SRT or ASR (if availa ble) must be enabled.
5. The thermal resistance data is based off of a number of samples from multiple lots and
should be viewed as a typical number.
Figure 14: Thermal Measurement Point
Table 8: Thermal Characteristics
Parameter/Condition Value Units Symbol Notes
Operating case temperature 0 to 85 °C TC1, 2, 3
0 to 95 °C TC1, 2, 3, 4
Junction-to-case (TOP) 78-ball “HX” 3.2 °C/W ΘJC 5
78-ball “JP TBD
86-ball “BY” 2.8
96-ball “LA” 2.8
96-ball “JT TBD
(L/2)
L
W
(W/2)
Tc test point
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 31 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Electrical Specifications – IDD Specifications and Conditions
Within the following Idd measurement tables (Table 9 through Table 19), the following
definitions and conditions are used, unless stated otherwise:
•LOW: V
IN VIL(AC) MAX; HIGH: VIN VIH(AC) MIN
Mid-level: Inputs are VREF = VDD/2
•R
ON set to RZQ/7, that is, 34Ω
•R
TT_NOM set to RZQ/6, that is, 40Ω.
•R
TT_WR set to RZQ/2, that is, 120Ω.
•Q
OFF is enabled in MR1
ODT is enabled in MR1 (RTT_NOM) and MR2 (RTT_WR)
TDQS is disabled in MR1
External DQ/DQS/DM load resister is 25Ω to VDDQ/2
Burst lengths are BL8 fixed
AL equals 0 (except in IDD7)
•I
DD specifications are tested after the device is properly initialized
Input slew rate is specified by AC parametric test conditions
Optional ASR is disabled
READ burst type uses nibble sequential (MR0 [3] 0)
Loop patterns must be executed at least once prior to curre n t measurements beg in
Table 9: Timing Parameters used for IDD Measurements – Clock Units
IDD Parameter
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units
-25E -25 -187E -187 -15E -15 -125E -125
5-5-5 6-6-6 7-7-7 8-8-8 9-9-9 10-10-10 10-10-10 11-11-11
tCK (MIN) IDD 2.5 1.875 1.5 1.25 ns
CL IDD 56789 10 10 11CK
tRCD (MIN) IDD 56789 10 10 11CK
tRC (MIN) IDD 20 21 27 28 33 34 38 39 CK
tRAS (MIN) IDD 15 15 20 20 24 24 28 28 CK
tRP (MIN) 56789 10 10 11CK
tFAW x4, x8 16 16 20 20 20 20 24 24 CK
x16 20 20 27 27 30 30 32 32 CK
tRRD IDD x4, x8 44444 4 5 5CK
x16 44665 5 6 6CK
tRFC 1Gb 44 44 59 59 74 74 88 88 CK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 32 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level.
2. DM is LOW.
3. Only selected bank (single) active.
Table 10: I DD0 Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
Toggling
Static HIGH
0
0 ACT 00110000000
1 D 10000000000
2 D 10000000000
3 D# 11110000000
4 D# 11110000000
Repeat cycles 1 through 4 until nRAS - 1, truncate if needed
nRAS PRE 00100000000
Repeat cycles 1 through 4 until nRC - 1, truncate if needed
nRC ACT 001100000F0
nRC + 1 D 100000000F0
nRC + 2 D 100000000F0
nRC + 3 D# 111100000F0
nRC + 4 D# 111100000F0
Repeat cycles nRC + 1 through nRC + 4 unti l nRC - 1 + nRAS -1, truncate if needed
nRC + nRAS PRE 001000000F0
Repeat cycles nRC + 1 through nRC + 4 until 2 × RC - 1, truncate if needed
12 × nRC Repeat sub-loop 0, use BA[2:0] = 1
24 × nRC Repeat sub-loop 0, use BA[2:0] = 2
36 × nRC Repeat sub-loop 0, use BA[2:0] = 3
48 × nRC Repeat sub-loop 0, use BA[2:0] = 4
510 × nRC Repeat sub-loop 0, use BA[2:0] = 5
612 × nRC Repeat sub-loop 0, use BA[2:0] = 6
714 × nRC Repeat sub-loop 0, use BA[2:0] = 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 33 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level unless driven as required by the READ (RD) comman d.
2. DM is LOW.
3. Burst sequence is driven on each DQ signal by the RD command.
4. Only selected bank (single) active.
Table 11: I DD1 Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data3
Toggling
Static HIGH
0
0 ACT 00110000000
1 D 10000000000
2 D 10000000000
3 D# 11110000000
4 D# 11110000000
Repeat cycles 1 t hrough 4 until nRCD - 1, truncate if neede d
nRCD RD 0101000000000000000
Repeat cycles 1 through 4 until nRAS - 1, truncate if needed
nRAS PRE 00100000000
Repeat cycles 1 through 4 until nRC - 1, truncate if needed
nRC ACT 001100000F0
nRC + 1 D 100000000F0
nRC + 2 D 100000000F0
nRC + 3 D# 111100000F0
nRC + 4 D# 111100000F0
Repeat cycles nRC + 1 throu gh nRC + 4 until nRC + nRCD - 1, truncate if needed
nRC + nRCD RD 010100000F000110011
Repeat cycles nRC + 1 through nRC + 4 until nRC + nRAS - 1, truncate if needed
nRC + nRAS PRE 001000000F0
Repeat cycle nRC + 1 through nRC + 4 until 2 × nRC - 1, truncate if needed
12 × nRC Repeat sub-loop 0, use BA[2:0] = 1
24 × nRC Repeat sub-loop 0, use BA[2:0] = 2
36 × nRC Repeat sub-loop 0, use BA[2:0] = 3
48 × nRC Repeat sub-loop 0, use BA[2:0] = 4
510 × nRC Repeat sub-loop 0, use BA[2:0] = 5
612 × nRC Repeat sub-loop 0, use BA[2:0] = 6
714 × nRC Repeat sub-loop 0, use BA[2:0] = 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 34 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
I
Notes: 1. MR0[12] defines DLL on/off behavior during precharge power-down only; DLL on (fast exit,
MR0[12] = 1) and DLL off (slow exit, MR0[12] = 0).
2. “Enabled, off“ means the MR bits are enabled, but the signal is LOW.
Table 12: I DD Measurement Conditions for Power- Down Currents
Name
IDD2P0 Precharge
Power-Down
Current
(Slow Exit)1
IDD2P1 Precharge
Power-Down
Current
(Fast Exit)1
IDD2Q Precharge
Quiet Standby
Current
IDD3P
Active Power-
Down Current
Timing pattern n/a n/a n/a n/a
CKE LOW LOW HIGH LOW
External clock Toggling Toggling Toggling Toggling
tCK tCK (MIN) IDD tCK(MIN) IDD tCK(MIN) IDD tCK (MIN) IDD
tRC n/a n/a n/a n/a
tRAS n/a n/a n/a n/a
tRCD n/a n/a n/a n/a
tRRD n/a n/a n/a n/a
tRC n/a n/a n/a n/a
CL n/a n/a n/a n/a
AL n/a n/a n/a n/a
CS# HIGH HIGH HIGH HIGH
Command inputs LOW LOW LOW LOW
Row/column addr LOW LOW LOW LOW
Bank addresses LOW LOW LOW LOW
DM LOW LOW LOW LOW
Data I/O Mid-level Mid-level Mid-level Mid-level
Output buffer DQ, DQS Enabled Enabled Enabled Enabled
ODT2Enabled, off Enabled, off Enabled, off Enabled, off
Burst length 8888
Active banks None None None All
Idle banks All All All None
Special notes n/a n/a n/a n/a
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 35 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level.
2. DM is LOW.
3. All banks closed during IDDD2N, all banks open during IDD3N.
Notes: 1. DQs, DQS, DQS# are mid-level.
2. DM is LOW.
3. All banks closed.
Table 13: I DD2N and IDD3N Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
Toggling
Static HIGH
0
0 D 10000000000
1 D 10000000000
2 D# 111100000F0
3 D# 111100000F0
14–7 Repeat sub-loop 0, use BA[2:0] = 1
28–11 Repeat sub-loop 0, use BA[2:0] = 2
312–15 Repeat sub-loop 0, use BA[2:0] = 3
416–19 Repeat sub-loop 0, use BA[2:0] = 4
520–23 Repeat sub-loop 0, use BA[2:0] = 5
624–27 Repeat sub-loop 0, use BA[2:0] = 6
728–31 Repeat sub-loop 0, use BA[2:0] = 7
Table 14: I DD2NT Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
Toggling
Static HIGH
0
0 D 10000000000
1 D 10000000000
2 D# 111100000F0
3 D# 111100000F0
14–7 Repeat sub-loop 0, use BA[2:0] = 1; ODT = 0
28–11 Repeat sub-loop 0, use BA[2:0] = 2; ODT = 1
312–15 Repeat sub-loop 0, use BA[2:0] = 3; ODT = 1
416–19 Repeat sub-loop 0, use BA[2:0] = 4; ODT = 0
520–23 Repeat sub-loop 0, use BA[2:0] = 5; ODT = 0
624–27 Repeat sub-loop 0, use BA[2:0] = 6; ODT = 1
728–31 Repeat sub-loop 0, use BA[2:0] = 7; ODT = 1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 36 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level when not driving in burst sequence.
2. DM is LOW.
3. Burst sequence is driven on each DQ signal by the RD command.
4. All banks ope n.
Table 15: I DD4R Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data3
Toggling
Static HIGH
0
0 RD 0101000000000000000
1 D 10000000000
2 D# 11110000000
3 D# 11110000000
4 RD 010100000F000110011
5 D 100000000F0
6 D# 111100000F0
7 D# 111100000F0
18–15 Repeat sub-loop 0, use BA[2:0] = 1
216–23 Repeat sub-loop 0, use BA[2:0] = 2
324–31 Repeat sub-loop 0, use BA[2:0] = 3
432–39 Repeat sub-loop 0, use BA[2:0] = 4
540–47 Repeat sub-loop 0, use BA[2:0] = 5
648–55 Repeat sub-loop 0, use BA[2:0] = 6
756–63 Repeat sub-loop 0, use BA[2:0] = 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 37 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level when not driving in burst sequence.
2. DM is LOW.
3. Burst sequence is driven on eac h DQ sig na l by the WRITE (WR) com m an d.
4. All banks ope n.
Table 16: I DD4W Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data3
Toggling
Static HIGH
0
0 WR 0100100000000000000
1 D 10001000000
2 D# 11111000000
3 D# 11111000000
4 WR 010010000F000110011
5 D 100010000F0
6 D# 111110000F0
7 D# 111110000F0
18–15 Repeat sub-loop 0, use BA[2:0] = 1
216–23 Repeat sub-loop 0, use BA[2:0] = 2
324–31 Repeat sub-loop 0, use BA[2:0] = 3
432–39 Repeat sub-loop 0, use BA[2:0] = 4
540–47 Repeat sub-loop 0, use BA[2:0] = 5
648–55 Repeat sub-loop 0, use BA[2:0] = 6
756–63 Repeat sub-loop 0, use BA[2:0] = 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 38 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level.
2. DM is LOW.
Table 17: IDD5B Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle
Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data
Toggling
Static HIGH
00 REF 00010000000
1a
1 D 10000000000
2 D 10000000000
3 D# 111100000F0
4 D# 111100000F0
1b 5–8 Repeat sub-loop 1a, use BA[2:0] = 1
1c 9–12 Repeat sub-loop 1a, use BA[2:0] = 2
1d 13–16 Repeat sub-loop 1a, use BA[2:0] = 3
1e 17–20 Repeat sub-loop 1a, use BA[2:0] = 4
1f 21–24 Repeat sub-loop 1a, use BA[2:0] = 5
1g 25–28 Repeat sub-loop 1a, use BA[2:0] = 6
1h 29–32 Repeat sub-loop 1a, use BA[2:0] = 7
233–nRFC - 1 Repeat sub-loop 1a through 1h until nRFC - 1, truncate if needed
Table 18: I DD Measurement Conditions for IDD6, IDD6ET, and IDD8
IDD Test
IDD6: Self Refresh Current
Normal Temperature
Range
TC = 0°C to 85°C
IDD6ET: Self Refresh
Current
Extended Temperature
Range
TC = 0°C to 95°C IDD8: Reset2
CKE LOW LOW Mid-level
External clock Off, CK and CK# = LOW Off, CK and CK# = LOW Mid-level
tCK n/a n/a n/a
tRC n/a n/a n/a
tRAS n/a n/a n/a
tRCD n/a n/a n/a
tRRD n/a n/a n/a
tRC n/a n/a n/a
CL n/a n/a n/a
AL n/a n/a n/a
CS# Mid-level Mid-level Mid-level
Command inputs Mid-level Mid-level Mid-level
Row/column addresses Mid-level Mid-level Mid-level
Bank addresses Mid-level Mid-level Mid-level
Data I/O Mid-level Mid-level Mid-level
Output buffer DQ, DQS Enabled Enabled Mid-level
ODT1Enabled, mid-level Enabled, mid-level Mid-level
Burst length n/a n/a n/a
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 39 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. Enabled, mid-level“ means the MR command is enabled, but the signal is mid-level.
2. During a cold boot RESET (initialization), the current reading is valid once power is stable
and RESET has been LOW for 1ms; during a warm boot RESET (while operating), the current
reading is valid after RESET has been LOW for 200ns + tRFC.
Active banks n/a n/a None
Idle banks n/a n/a All
SRT disab led (no rmal) enabled (extended) n/a
ASR disabled disabled n/a
Table 18: I DD Measurement Conditions for IDD6, IDD6ET, and IDD8
IDD Test
IDD6: Self Refresh Current
Normal Temperature
Range
TC = 0°C to 85°C
IDD6ET: Self Refresh
Current
Extended Temperature
Range
TC = 0°C to 95°C IDD8: Reset2
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 40 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – I
DD
Specifications and Conditions
Notes: 1. DQs, DQS, DQS# are mid-level unless driven as required by the RD command.
2. DM is LOW.
3. Burst sequence is driven on each DQ signal by the RD command.
4. AL = CL - 1.
Table 19: I DD7 Measurement Loop
CK, CK#
CKE
Sub-loop
Cycle Number
Command
CS#
RAS#
CAS#
WE#
ODT
BA[2:0]
A[15:11]
A[10]
A[9:7]
A[6:3]
A[2:0]
Data3
Toggling
Static HIGH
0 0 ACT00110000000
1 RDA 0101000100000000000
2 D 10000000000
3 Repeat cycle 2 until nRRD - 1
1nRRD ACT001101000F0
nRRD + 1 RDA 010101010F000110011
nRRD + 2 D 100001000F0
nRRD + 3 Repeat cycle nRRD + 2 unt il 2 × nRR D - 1
22 × nRRD Repeat sub-loop 0, use BA[2:0] = 2
33 × nRRD Repeat sub-loop 1, use BA[2:0] = 3
44 × nRRD D 100003000F0
4 × nRRD + 1 Repeat cycle 4 × nRRD until nFAW - 1, if needed
5nFAW Repeat sub-loop 0, use BA[2:0] = 4
6nFAW + nRRD Repeat sub-loop 1 use BA[2:0] = 5
7nFAW + 2 × nRRD Repeat sub-loop 0, use BA[2:0] = 6
8nFAW + 3 × nRRD Repeat sub-loop 1 use BA[2:0] = 7
9nFAW + 4 × nRRD D 100007000F0
nFAW + 4 × nRRD + 1 Repeat cycle nFAW + 4 × nRRD until 2 × nFAW - 1, if needed
10 2 × nFAW ACT001100000F0
2 × nFAW + 1 RDA 010100010F000110011
2 × nFAW + 2 D 100000000F0
2 × nFAW + 3 Repeat cy cle 2 × nFAW + 2 until 2 × nFAW + nRRD - 1
11 2 × nFAW + nRRD ACT00110100000
2 × nFAW + nRRD + 1RDA 0101010100000000000
2 × nFAW + nRRD + 2 D 10000100000
2 × nFAW + nRRD + 3 Repeat cycle 2 × nFAW + nR RD + 2 unt il 2 × nFAW + 2 × nRRD - 1
12 2 × nFAW + 2 × nRRD Repeat sub-loop 10, use BA[2:0] = 2
13 2 × nFAW + 3 × nRRD Repeat sub-loop 11, use BA[2:0] = 3
14 2 × nFAW + 4 × nRRD D 10000300000
2 × nFAW + 4 × nRRD + 1 Repeat cycle 2 × nFAW + 4 × nRRD until 3 × nFAW - 1, if needed
15 3 × nFAW Repeat sub-loop 10, use BA[2:0] = 4
16 3 × nFAW + nRRD Repeat sub-loop 11 use BA[2:0] = 5
17 3 × nFAW + 2 × nRRD Repeat sub-loop 10, use BA[2:0] = 6
18 3 × nFAW + 3 × nRRD Repeat sub-loop 11 use BA[2:0] = 7
19 3 × nFAW + 4 × nRRD D 10000700000
3 × nFAW + 4 × nRRD + 1 Repeat cycle 3 × nFAW + 4 × nRRD until 4 × nFAW - 1, if needed
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D2.fm - Rev G 2/09 EN 41 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Characteristics – I
DD
Specifications
Electrical Characteristics – IDD Specifications
IDD values are for full operati n g range of voltage and temperature unless otherwise
noted.
Notes: 1. TC = 85°C; SRT and ASR are disabled.
2. Enabling ASR could increase IDDx by up to an additional 2mA.
3. Restricted to TC (MAX) = 85°C.
4. Rev B, x4 and x8 maximum limit is 7m A .
5. TC = 85°C; ASR and ODT are disabled; SRT is enabled.
6. The IDD values must be derated (in creased) on IT-option and AT-option de vices when oper-
ated outside of the range 0°C TC 85°C:
6a. When TC < 0°C: IDD2P and IDD3P must be derated by 4%; IDD4R and IDD5W must be der-
ated by 2%; and IDD6 and IDD7 must be derated by 7%.
6b. When TC > 85°C: IDD0, IDD1, I DD2N, IDD2NT , IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W , and IDD5W
must be derated by 2%; IDD2Px must be derated by 30 %; and IDD6 must be derated by
80%.
Table 20: IDD Maximum Limits
Speed Bin
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units NotesIDD Width
IDD0 x4 65 75 85 95 mA 1, 2
x8 90 100 110 120 mA 1, 2
x16 90 100 110 120 mA 1, 2
IDD1 x4 85 95 105 115 mA 1, 2
x8 110 120 130 140 mA 1, 2
x16 110 130 150 170 mA 1, 2
IDD2P0 (slow)All12121212mA1, 2
IDD2P1 (fast)All30354045mA1, 2
IDD2Q All 46 53 60 67 mA 1, 2
IDD2NAll50556570mA1, 2
IDD2NT x4, x8 65 75 85 95 mA 1, 2
x16 80 95 105 115 mA 1, 2
IDD3P All 30 35 40 45 mA 1, 2
IDD3N x4, x8 52 57 62 67 mA 1, 2
x1650556065mA1, 2
IDD4R x4 130 160 200 250 mA 1, 2
x8 130 160 200 250 mA 1, 2
x16 230 260 290 320 mA 1, 2
IDD4W x4 160 190 220 250 mA 1, 2
x8 160 190 220 250 mA 1, 2
x16 240 290 355 430 mA 1, 2
IDD5B All 200 220 240 260 mA 1, 2
IDD6All6666mA1, 2, 3, 4
IDD6ET All 9 9 9 9 mA 2, 5
IDD7 x4 230 250 315 400 mA 1, 2
x8 350 390 490 600 mA 1, 2
x16 350 380 420 460 mA 1, 2
IDD8 All IDD2P + 2mA IDD2P + 2mA IDD2P + 2mA IDD2P + 2mA mA 1, 2
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 42 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Electrical Specifications – DC and AC
DC Operating Conditions
Notes: 1. VDD and VDDQ must track one another. VDDQ must be less than or equal to VDD. VSS = VSSQ.
2. VDD and VDDQ may include AC noise of ±50mV (250 kHz to 20 MHz) in addition to the DC
(0Hz to 250 kHz) specifications. VDD and VDDQ must be at same level for valid AC timing
parameters.
3. VREF (see Table 22).
4. The minimum limit requirement is for testing purposes. The leakage current on the VREF pin
should be mini mal.
Input Operating Conditions
Notes: 1. VREFCA(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC level.
Externally generated peak noise (noncommon mod e) on VREFCA may not exceed ±1% × V DD
around the VREFCA(DC) value. Peak-to-peak AC noise on VREFCA should not exce ed ±2% of
VREFCA(DC).
2. DC values are determined to be less than 20 MHz in frequency. DRAM must meet specifica-
tions if the DRAM induces additional AC noise greater than 20 MHz in frequency.
3. VREFDQ(DC) is expected to be approximately 0.5 × VDD and to track variations in the DC
level. Externally generated peak noise (noncommon mode) on V REFDQ may not exceed ±1%
× VDD around the VREFDQ(DC) value. Peak-to-peak AC noise on VREFDQ should not exceed
±2% of V REFDQ(DC).
4. VREFDQ(DC) may transition to VREFDQ(SR) and back to VREFDQ(DC) when in SELF REFRESH,
within restrictions outlined in the SELF REFRESH section.
5. VTT is not applied directly to the device. VTT is a system supply for signal termination resis-
tors. MIN and MAX values are system-dependent.
Table 21: DC Electrical Characteristics and Operating Conditions
All voltages are referenced to VSS
Parameter/Condition Symbol Min Nom Max Units Notes
Supply voltage VDD 1.425 1.5 1.575 V 1, 2
I/O supply voltage VDDQ 1.425 1.5 1.575 V 1, 2
Input leakage current
Any input 0V VIN VDD, VREF pin 0V VIN 1.1V
(All other pins not under test = 0V)
II–2 2 µA
VREF supply leakage current
VREFDQ = VDD/2 or VREFCA = VDD/2
(All other pins not under test = 0V)
IVREF –1 1 µA 3, 4
Table 22: DC Electrical Characteristics and Input Conditions
All voltages are referenced to VSS
Parameter/Condition Symbol Min Nom Max Units Notes
VIN low; DC/commands/address busses VIL VSS n/a See Table 21 V
VIN high; DC/commands/address bu sses VIH See Table 21 n/a VDD V
Input reference voltage command/address bus VREFCA(DC)0.49×VDD 0.5 × VDD 0.51 × VDD V1, 2
I/O reference voltage DQ bus VREFDQ(DC)0.49×VDD 0.5 × VDD 0.51 × VDD V2, 3
I/O reference voltage DQ bus in SELF REFRESH VREFDQ(SR)VSS 0.5 × VDD VDD V4
Command/address termination voltage
(system level, not direct DRAM input) VTT –0.5×VDDQ– V5
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 43 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Notes: 1. All voltages are referenced to VREF. VREF is VREFCA for control, command, and address. All
slew rates and setup/hold times are specified at the DRAM ball. VREF is VREFDQ for DQ and
DM inputs.
2. Input setup timing parameters (tIS and tDS) are referenced at VIL(AC)/VIH(AC), not VREF(DC).
3. Input hold timing parameters (tIH and tDH) are referenced at VIL(DC)/VIH(DC), not VREF(DC).
4. Single-ended input slew rate = 1 V/ns; maximum input voltage swing under test is 900mV
(peak-to-peak).
Ta ble 23: Input Switching Cond itions
Parameter/Condition Symbol DDR3-800
DDR3-1066 DDR3-1333
DDR3-1600 Units
Command and Address
Input high AC voltage: Logic 1 V IH(AC175) MIN +175 175 mV
Input high AC voltage: Logic 1 V IH(AC150) MIN +150 +150 mV
Input high DC voltage: Logic 1 V IH(DC100) MIN +100 +100 mV
Input low DC voltage: Logic 0 VIL(DC100) MAX –100 –100 mV
Input low AC voltage: Logic 0 VIL(AC150) MAX –150 –150 mV
Input low AC voltage: Logic 0 VIL(AC175) MAX –175 –175 mV
DQ and DM
Input high AC voltage: Logic 1 V IH(AC175) MIN +175 mV
Input high AC voltage: Logic 1 V IH(AC150) MIN +150 +150 mV
Input high DC voltage: Logic 1 V IH(DC100) MIN +100 +100 mV
Input low DC voltage: Logic 0 VIL(DC100) MAX –100 –100 mV
Input low AC voltage: Logic 0 VIL(AC150) MAX –150 –150 mV
Input low AC voltage: Logic 0 VIL(AC)175 MAX –175 mV
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 44 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Figure 15: Input Signal
Notes: 1. Numbers in diagrams reflect nominal values.
AC Overshoot/Undershoot Specification
Table 24: Control and Address Pins
Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for overshoot area
(see Figure 16 on page 45) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for undershoot area
(see Figure 17 on page 45) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDD (see Figure 16 on page 45) 0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns
Maximum undershoot area below VSS (see Figure 17 on page 4 5) 0.67 Vns 0.5 Vns 0.4 Vns 0.33 Vns
0.575V
0.0V
0.650V
0.720V
0.735V
0.750V
0.765V
0.780V
0.850V
0.925V
VIL(AC)
VIL(DC)
VREF - AC noise
VREF - DC error
VREF + DC error
VREF + AC noise
VIH(DC)
VIH(AC)
1.50V
1.90V
–0.40V
VDDQ
VDDQ + 0.4V narrow
pulse width
VSS - 0.4V narrow
pulse width
VSS
0.575V
0.650V
0.720V
0.735V
0.750V
0.765V
0.780V
0.850V
0.925V
Minimum VIL and VIH levels
VIH(DC)
VIH(AC)
VIL(AC)
VIL(DC)
VIL and VIH levels with ringback
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 45 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Figure 16: Overshoot
Figure 17: Undershoot
Ta ble 25: Clock, Data, Strobe, and Mask Pins
Parameter DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Maximum peak amplitude allowed for overshoot area
(see Figure 16 on page 45) 0.4V 0.4V 0.4V 0.4V
Maximum peak amplitude allowed for undershoot area
(see Figure 17 on page 45) 0.4V 0.4V 0.4V 0.4V
Maximum overshoot area above VDD/VDDQ
(see Figure 16 on page 45) 0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns
Maximum undershoot area below VSS/VSSQ
(see Figure 17 on page 45) 0.25 Vns 0.19 Vns 0.15 Vns 0.13 Vns
Maximum amplitude Overshoot area
VDD/VDDQ
Time (ns)
Volts (V)
Maximum amplitudeUndershoot area
VSS/VSSQ
Time (ns)
Volts (V)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 46 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Notes: 1. Clock is referenced to VDD and VSS. Data strobe is referenced to VDDQ and VSSQ.
2. Reference is VREFCA(DC) for clock and for VREFDQ(DC) for strobe.
3. Differential input slew rate = 2 V/ns
4. Defines slewrate reference points, relative to input crossing voltages.
5. MAX limit is relative to single-ended signals, the overshoot specifications are applicable.
6. MIN limit is relative to single-ended signals, the undershoot specifications are applicable.
7. The typical value of VIX(AC) is expected to be about 0.5 × VDD of the transmitting device,
and VIX(AC) is expected to track variations in VDD. V IX(AC) indicates the voltage at which dif-
ferential input signals must cross.
8. The VIX extended range (±175mV) is allowed only for the clock, and this VIX extended range
is only allowed when the following conditions are met: The single-ended input signals are
monotonic, have the single-ended swing VSEL, VSEH of at least VDD/2 ±250mV, and the dif-
ferential slew rate of CK, CK# is greater than 3 V/ns.
Figure 18: Vix for Differential Signals
Table 26: Differential Input Operating Conditions (CK, CK# and DQS, DQS#)
Parameter/Condition Symbol Min Max Units Notes
Differential in put voltag e logic high - slew VIHDIFF(AC)slew +200 n/a mV 4
Differential input voltage logic low - slew VILDIFF(AC)slew n/a –200 mV 4
Differential input voltage logic high VIHDIFF(AC)2 × (VIH(AC)-VREF)VDD/VDDQmV5
Differential input voltage logic low VILDIFF(AC)VSS/VSSQ2 × (VREF - VIL(AC)) mV 6
Differential input crossing voltage relative
to VDD/2 for DQS, DQS#; CK, CK# VIX VREF(DC) - 150 VREF(DC) + 150 mV 7
Differential input crossing voltage relative
to VDD/2 for CK, CK# VIX (175) VREF(DC) - 175 VREF(DC) + 175 mV 7, 8
Single-ended high level for strobes VSHE VDDQ/2 + VIH(AC)VDDQmV5
Single-ended high level for CK, CK# VDD/2 + VIH(AC)VDD mV 5
Single-ended low level for strobes VSEL VSSQVDDQ/2 - VIL(AC)mV 6
Single-ended low level for CK, CK# VSS VDD/2 - VIL(AC)mV6
CK, DQS
Vdd/2, Vddq/2Vdd/2, Vddq/2
Vix
Vix
CK#, DQS#
Vdd, Vddq
CK, DQS
Vdd, Vddq
Vss, Vssq
CK#, DQS#
Vss, Vssq
X
X
X
X
Vix
Vix
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 47 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Figure 19: Single-Ended Requirements for Differential Signals
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 48 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Figure 20: Definition of Differential AC-Swing and tDVAC
Ta ble 27: Allowed Time Before Ringback (tDVAC) for CK - CK# and DQS - DQS#
Below VIL(AC)
Slew Rate (V/ns)
tDVAC (ps) at |VIHDIFF(AC) to VILDIFF(AC)|
350mV 300mV
>4.0 75 175
4.0 57 170
3.0 50 167
2.0 38 163
1.9 34 162
1.6 29 161
1.4 22 159
1.2 13 155
1.0 0 150
<1.0 0 150
VIHDIFF(AC) MIN
VIHDIFF(DC) MIN
0.0
VILDIFF(DC) MAX
VILDIFF (MAX)
tDVAC
VIHDIFF (MIN)
VILDIFF(AC) MAX
half cycle tDVAC
CK - CK#
DQS - DQS#
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 49 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Slew Rate Definitions for Single-Ended Input Signals
Set up ( tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate
between the last crossing of VREF and the firs t cros si ng of V IH(AC) MIN. Setup (tIS and
tDS) nominal slew rate for a falling signal is defined as the slew ra te between the last
crossing of VREF and the first crossing of VIL(AC) MAX (see Figure 21 on page 50).
Hold (tIH and tDH) nomina l slew rate for a rising signal is defined as the slew rate
between the last crossing of VIL(DC) MAX and the first crossing of VREF. Hold (tIH and
tDH) nominal slew rate for a falling signal is defined as the slew rate between the last
crossing of VIH(DC) MIN and the first crossing of VREF (see Figure 21 on page 50).
Table 28: Single-Ended Input Slew Rate Definition
Input Slew Rates
(Linear Signals) Measured
CalculationInput Edge From To
Setup Rising VREF VIH(AC) MIN
Falling VREF VIL(AC) MAX
Hold Rising VIL(DC) MAX VREF
Falling VIH(DC) MIN VREF
VIH(AC) MIN - VREF
ΔTRS
V
REF
- V
IL
(
AC
) MAX
ΔTFS
V
REF
- V
IL
(
DC
) MAX
ΔTFH
VIH(DC) MIN - VREF
ΔTRSH
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 50 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Figure 21: Nominal Slew Rate Definition for Single-Ended Input Signals
ΔTRS
ΔTFS
ΔTRH
ΔTFH
VREFDQ or
VREFCA
VIH(AC) MIN
VIH(DC) MIN
VIL(AC) MAX
VIL(DC) MAX
VREFDQ or
VREFCA
VIH(AC) MIN
VIH(DC) MIN
VIL(AC) MAX
VIL(DC) MAX
Setup
Hold
Single-ended input voltage (DQ, CMD, ADDR)
Single-ended input voltage (DQ, CMD, ADDR)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 51 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Electrical Specifications – DC and AC
Slew Rate Definitions for Differential Input Signals
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and
measured, as sho wn in Table 29 and Figure22. The nominal slew rate for a rising s ignal is
defined as the slew rate between VIL(DIFF) MAX and VIH(DIFF) MIN. The nominal slew
rate for a falling signal is defined as the slew rate between VIH(DIFF)MIN and
VIL(DIFF)MAX.
Figure 22: Nominal Differential Input Slew Rate Definition for DQS, DQS# and CK, CK#
Ta ble 29: Differential Input Slew Rate Definition
Differential Input
Slew Rates (Linear
Signals) Measured
CalculationInput Edge From To
CK and DQS
reference Rising VIL(DIFF) MAX VIH(DIFF) MIN
Falling VIH(DIFF) MIN VIL(DIFF) MAX
VIH(DIFF) MIN - VIL(DIFF) MAX
ΔTR(DIFF)
VIH(DIFF) MIN - VIL(DIFF) MAX
ΔTF(DIFF)
ΔTRDIFF
ΔTFDIFF
VIH(DIFF) MIN
VIL(DIFF) MAX
0
Differential input voltage (DQS, DQS#; CK, CK#)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 52 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
ODT Characteristics
ODT Characteristics
ODT effective resistance RTT is defined b y MR1[9, 6, and 2]. ODT is applied to the DQ,
DM, DQS, DQS#, and TDQS, TDQS# balls (x8 devices only). The ODT target values are
listed in Table 30 and Table 31 on page 53. A functional representation of the ODT is
shown in Figure 23. The individual pull-up and pull-down resistors (RTTPU and RTTPD)
are defined as follows:
•R
TTPU = (VDDQ - VOUT)/|IOUT|, under the condition that RTTPD is turned off
•R
TTPD = (VOUT)/|IOUT|, under the condition that RTTPU is turned off
Figure 23: ODT Levels and I-V Characteristics
Notes: 1. Tolerance limits are applicable after proper ZQ calibration has been performed at a stable
temperature and voltage (VDDQ = VDD, VSSQ = VSS). Refer to “ODT Sensitivity” on page 53 if
either the temperature or voltage changes after calibration.
2. Measurement definition for RTT: Apply VIH(AC) to pin under test and measure current
I[VIH(AC)], then apply VIL(AC) to pin under test and measure current I[VIL(AC)]:
3. Measure voltage (VM) at the tested pin with no load:
4. For IT and AT devices, the minimum values are derated by 6% when the device oper ates
between –40°C and 0°C (TC).
ODT Resistors
Table 31 on page 53 provides an overview of the ODT DC electrical characteristics. The
values provided are not specification requir ements; however, they can be used as design
guidelines to indicat e what RTT is targeted to provide:
•R
TT 120Ω is made up of RTT120PD240 and RTT120PU240
•RTT 60Ω is made up of RTT60PD120 and RTT60PU120
•RTT 40Ω is made up of RTT40PD80 and RTT40PU80
•RTT 30Ω is made up of RTT30PD60 and RTT30PU60
•RTT 20Ω is made up of RTT20PD40 and RTT20PU40
Table 30: On-Die Termination DC Electrical Characteristics
Parameter/Condition Symbol Min Nom Max Units Notes
RTT effective impedance RTT_EFF See Table 31 on page 53 1, 2
Deviation of VM with respec t to VDDQ/2 ΔVM –5 +5 % 1, 2, 3
R
TTPU
R
TTPD
ODT
Chip in termination mode
V
DD
Q
DQ
V
SS
Q
I
OUT
= I
PD
- I
PU
I
PU
I
PD
I
OUT
V
OUT
To
other
circuitry
such as
RCV, . . .
RTT VIH AC()VIL AC()
|IV
IH AC()()IVIL AC()()|
--------------------------------------------------------------
=
ΔVM 2VM×
VDDQ
------------------1
⎝⎠
⎛⎞
100×=
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 53 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
ODT Characteristics
Notes: 1. Values assume an RZQ of 240Ω (±1%).
ODT Sensitivity
If either the temperature or voltage changes after I/O calibration, the tolerance limits
listed in Table 30 on page 52 and Table 31 can be expected to widen according to
Tables 32 and 33 on page 54.
Table 31: RTT Effective Impedances
MR1
[9, 6, 2] RTT Resistor VOUT Min Nom Max Units
0, 1, 0 120 ΩRTT120PD240 0.2 × VDDQ 0.6 1.0 1.1 RZQ/1
0.5 × VDDQ 0.9 1.0 1.1 RZQ/1
0.8 × VDDQ 0.9 1.0 1.4 RZQ/1
RTT120PU240 0.2 × VDDQ 0.9 1.0 1.4 RZQ/1
0.5 × VDDQ 0.9 1.0 1.1 RZQ/1
0.8 × VDDQ 0.6 1.0 1.1 RZQ/1
120ΩVIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/2
0, 0, 1 60ΩRTT60PD120 0.2 × VDDQ0.6 1.0 1.1 RZQ/2
0.5 × VDDQ0.9 1.0 1.1 RZQ/2
0.8 × VDDQ0.9 1.0 1.4 RZQ/2
RTT60PU120 0.2 × VDDQ0.9 1.0 1.4 RZQ/2
0.5 × VDDQ0.9 1.0 1.1 RZQ/2
0.8 × VDDQ0.6 1.0 1.1 RZQ/2
60ΩVIL(AC) to VIH(AC)0.9 1.0 1.6 RZQ/4
0, 1, 1 40ΩRTT40PD80 0.2 × VDDQ 0.6 1.0 1.1 RZQ/3
0.5 × VDDQ 0.9 1.0 1.1 RZQ/3
0.8 × VDDQ 0.9 1.0 1.4 RZQ/3
RTT40PU80 0.2 × VDDQ 0.9 1.0 1.4 RZQ/3
0.5 × VDDQ 0.9 1.0 1.1 RZQ/3
0.8 × VDDQ 0.6 1.0 1.1 RZQ/3
40ΩVIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/6
1, 0, 1 30ΩRTT30PD60 0.2 × VDDQ0.6 1.0 1.1 RZQ/4
0.5 × VDDQ0.9 1.0 1.1 RZQ/4
0.8 × VDDQ0.9 1.0 1.4 RZQ/4
RTT30PU60 0.2 × VDDQ0.9 1.0 1.4 RZQ/4
0.5 × VDDQ0.9 1.0 1.1 RZQ/4
0.8 × VDDQ0.6 1.0 1.1 RZQ/4
30ΩVIL(AC) to VIH(AC)0.9 1.0 1.6 RZQ/8
1, 0, 0 20ΩRTT20PD40 0.2 × VDDQ 0.6 1.0 1.1 RZQ/6
0.5 × VDDQ 0.9 1.0 1.1 RZQ/6
0.8 × VDDQ 0.9 1.0 1.4 RZQ/6
RTT20PU40 0.2 × VDDQ 0.9 1.0 1.4 RZQ/6
0.5 × VDDQ 0.9 1.0 1.1 RZQ/6
0.8 × VDDQ 0.6 1.0 1.1 RZQ/6
20ΩVIL(AC) to VIH(AC) 0.9 1.0 1.6 RZQ/12
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 54 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
ODT Characteristics
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration) and V DD = VDDQ.
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration) and V DD = VDDQ.
ODT Timing Definitions
ODT loading differs from that used in AC timing measurements. The refe rence load for
ODT timings is shown in Figure24. Two parameters define when ODT turns on or off
synchronously, two define when ODT turns on or off asynchronously, and another
defines when ODT turns on or off dynamically. Table 34 outlines and pr ovides definition
and measure ment reference settings for each parame ter (see Figure 35 on page 55).
ODT turn-on time begins when the output leaves H igh-Z and ODT resistance begins to
turn on. ODT turn-off time begins when the output leave s Low-Z and ODT resistance
begins to turn off.
Figure 24: ODT Timing Reference Load
Table 32: ODT Sensitivity Definition
Symbol Min Max Units
RTT 0.9 - dRTTdT × |DT| - dRTTdV × |DV| 1.6 + dRTTdT × |DT| + dRTTdV × |DV| RZQ/(2, 4, 6, 8, 12)
Table 33: ODT Temperature and Voltage Sensitivity
Change Min Max Units
dRTTdT 0 1.5 %/°C
dRTTdV 0 0.15 %/mV
Ta ble 34: ODT Timing Definitions
Symbol Begin Point Definition End Point Definition Figure
tAON Rising ed ge of CK - CK# defined by t he
end point of ODTL on Extrapolated point at VSSQ Figure 25 on page 55
tAOF Ris ing edge of CK - CK# defin e d by the
end point of ODTL off Extrapolate d point at VRTT_NOM Figure 25 on page 55
tAONPD Rising edge of CK - CK# with ODT first
being register ed HIGH Extrapolated point at VSSQ Figure 26 on page 56
tAOFPD Rising edge of CK - C K# with ODT first
being registered LOW Extrapolated point at VRTT_NOM Figure 26 on page 56
tADC Rising edge of CK - CK# defined by the
end point of ODTLCNW, O D TLCWN4, or
ODTLCWN8
Extrapolated points at VRTT_WR and
VRTT_NOM Fig ure 27 on page 56
Timing reference point
DQ, DM
DQS, DQS#
TDQS, TDQS#
DUT
V
REF
V
TT
= V
SS
Q
V
DD
Q/2
ZQ
RZQ = 240Ω
V
SS
Q
R
TT
= 25Ω
CK, CK#
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 55 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
ODT Characteristics
Notes: 1. Assume an RZQ of 240Ω (±1%) and that proper ZQ calibration has been performed at a sta-
ble temperature and voltage (VDDQ = VDD, VSSQ = VSS).
Figure 25: tAON and tAOF Definitions
Table 35: Reference Settings for ODT Timing Measurements
Measured Parameter RTT_NOM Setting RTT_WR Setting VSW1 VSW2
tAON RZQ/4 (60Ω) n/a 50mV 100mV
RZQ/12 (20Ω) n/a 100mV 200mV
tAOF RZQ/4 (60Ω) n/a 50mV 100mV
RZQ/12 (20Ω) n/a 100mV 200mV
tAONPD RZQ/4 (60Ω) n/a 50mV 100mV
RZQ/12 (20Ω) n/a 100mV 200mV
tAOFPD RZQ/4 (60 Ω) n/a 50mV 100mV
RZQ/12 (20Ω) n/a 100mV 200mV
tADC RZQ/12 (20Ω)RZQ/2 (120Ω) 200mV 300mV
CK
CK#
tAON
VSSQ
DQ, DM
DQS, DQS#
TDQS, TDQS#
Begin point: Rising edge of CK - CK#
defined by the end point of ODTL on
VSW1
End point: Extrapolated point at VSSQ
TSW1
TSW2
CK
CK#
VDDQ/2
tAOF
Begin point: Rising edge of CK - CK#
defined by the end point of ODTL off
End point: Extrapolated point at VRTT_NOM
VRTT_NOM
VSSQ
tAON tAOF
VSW2VSW2
VSW1
TSW1
TSW1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 56 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
ODT Characteristics
Figure 26: tAONPD and tAOFPD Definition
Figure 27: tADC Definition
CK
CK#
tAONPD
VSSQ
DQ, DM
DQS, DQS#
TDQS, TDQS#
Begin point: Rising edge of CK - CK#
with ODT first registered HIGH
VSW1
End point: Extrapolated point at VSSQ
TSW2
CK
CK#
VDDQ/2
tAOFPD
Begin point: Rising edge of CK - CK#
with ODT first registered LOW
End point: Extrapolated point at VRTT_NOM
VRTT_NOM
VSSQ
tAONPD tAOFPD
TSW1TSW2
TSW1
VSW2VSW2
VSW1
CK
CK#
tADC
DQ, DM
DQS, DQS#
TDQS, TDQS#
End point:
Extrapolated
point at VRTT_NOM
TSW21
tADC
End point: Extrapolated point at VRTT_WR
VDDQ/2
VSSQ
VRTT_NOM
VRTT_WR
VRTT_NOM
Begin point: Rising edge of CK - CK#
defined by the end point of ODTLCNW Begin point: Rising edge of CK - CK# defined by
the end point of ODTLCWN4 or ODTLCWN8
TSW11
VSW1
VSW2
TSW12
TSW22
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 57 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Driver Impedance
Output Driver Impedance
The output driver imp ed anc e is selected by MR1[5,1] during initi ali zation. The selected
value is able to maintain the tight tolerances specified if proper ZQ calibration is
performed. Output specifications refer to the default output driver unless specifically
stated otherwise. A functional representation of the output buffer is shown in Figure28
on page 57. The output driver impedance RON is defined by the value of the external
reference resistor RZQ as follows:
•R
ONx=RZQ/y (wit h RZQ = 240Ω ±1%; x = 34Ω or 40Ω with y = 7 or 6, respectively)
The individual pull- up an d pul l-down resistors (RONPU and RONPD) are defined as
follows:
•R
ONPU = (VDDQ - VOUT)/|IOUT|, when RONPD is turned off
•R
ONPD = (VOUT)/|IOUT|, when RONPU is turned off
Figure 28: Output Driver
34 Ohm Output Driver Impedance
The 34Ω driver (MR1[5, 1] = 01) is the default driver. Unless otherwise state d, al l tim ings
and specifications listed herein apply to the 34Ω driver only. Its impedance RON is
defined by the value of the external reference resistor RZQ as follows: RON34 =RZQ/7
(with nominal RZQ = 240Ω ±1%) and is actually 34.3Ω ±1%. The 34Ω output dr iver
impedance characteristics are listed in Table 36 on page 58.
RONPU
RONPD
Output driver
To
other
circuitry
such as
RCV, . . .
Chip in drive mode
VDDQ
VSSQ
IPU
IPD
IOUT
VOUT
DQ
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 58 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Driver Impedance
Notes: 1. Tolerance limits assume RZQ of 240Ω (±1%) and are applicable after proper ZQ calibration
has been performed at a stable temperature and voltage (VDDQ = VDD, VSSQ=VSS). Refer to
“34 Ohm Driver Output Sensitivity” on page 59 if either the temperature or the voltage
changes after calibration.
2. Measurement definition for mismatch between pull-up and pull-down (MMPUPD). Measure
both RONPU and RONPD at 0.5 × VDDQ:
3. For IT and AT devices, the minimum values are derated by 6% when the device oper ates
between –40°C and 0°C (TC ).
34 Ohm Driver
The 34Ω drivers current range has been calculated and summarized in Table 38 on
page 59 for VDD = 1.5V, Table 39 on page 59 for VDD = 1.575V, and Table 40 on page 59 for
VDD = 1.425V. The individual pull-up and pull-down r esistors (RON34PD and R ON34PU) ar e
defined as follows:
•R
ON34PD = (VOUT)/|IOUT|; RON34PU is turned off
•R
ON34PU = (VDDQ - VOUT)/|IOUT|; RON34PD is turned off
Table 36: 34Ω Driver Impedance Characteristics
MR1[5,1] RON Resistor VOUT Min Nom Max Units Notes
0,1 34.3ΩRON34PD 0.2/VDDQ0.6 1.0 1.1RZQ/71
0.5/VDDQ0.9 1.0 1.1RZQ/71
0.8/VDDQ0.9 1.0 1.4RZQ/71
RON34PU 0.2/VDDQ0.9 1.0 1.4RZQ/71
0.5/VDDQ0.9 1.0 1.1RZQ/71
0.8/VDDQ0.6 1.0 1.1RZQ/71
Pull-up/pull-down mismatch (MMPUPD) 0.5/VDDQ –10% n/a 10 % 1, 2
Table 37: 34Ω Driver Pull-Up and Pull-Down Impedance Calculations
RON Min Nom Max Units
RZQ = 240Ω ±1% 237.6 240 242.4 Ω
RZQ/7 = (240Ω ±1%)/7 33.9 34.3 34.6 Ω
MR1[5,1] RON Resistor VOUT Min Nom Max Units
0, 1 34.3ΩRON34PD 0.2 × VDDQ 20.4 34.3 38.1 Ω
0.5 × VDDQ 30.5 34.3 38.1 Ω
0.8 × VDDQ 30.5 34.3 48.5 Ω
RON34PU 0.2 × VDDQ 30.5 34.3 48.5 Ω
0.5 × VDDQ 30.5 34.3 38.1 Ω
0.8 × VDDQ 20.4 34.3 38.1 Ω
MMPUPD RONPU RONPD
RONNOM
------------------------------------ X100=
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 59 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Driver Impedance
34 Ohm Driver Output Sensitivity
If either the temperature or the voltage changes after ZQ cali bration, the toler ance limits
listed in Table 36 on page 58 can be expected to widen ac cording to Table 41 and
Table 42 on page 60.
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration), and VDD = VDDQ.
Table 38: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.5V
MR1[5,1] RON Resistor VOUT Max Nom Min Units
0, 1 34.3ΩRON34PD IOL @ 0.2 × VDDQ14.7 8.8 7.9 mA
IOL @ 0.5 × VDDQ 24.6 21.9 19.7 mA
IOL @ 0.8 × VDDQ 39.3 35.0 24.8 mA
RON34PU IOH @ 0.2 × VDDQ 39.3 35.0 24.8 mA
IOH @ 0.5 × VDDQ 24.6 21.9 19.7 mA
IOH @ 0.8 × VDDQ14.7 8.8 7.9 mA
Table 39: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.575V
MR1[5,1] RON Resistor VOUT Max Nom Min Units
0, 1 34.3ΩRON34PD IOL @ 0.2 × VDDQ15.5 9.2 8.3 mA
IOL @ 0.5 × VDDQ 25.8 23 20.7 mA
IOL @ 0.8 × VDDQ 41.2 36.8 26 mA
RON34PU IOH @ 0.2 × VDDQ 41.2 36.8 26 mA
IOH @ 0.5 × VDDQ 25.8 23 20.7 mA
IOH @ 0.8 × VDDQ15.5 9.2 8.3 mA
Table 40: 34Ω Driver IOH/IOL Characteristics: VDD = VDDQ = 1.425V
MR1[5,1] RON Resistor VOUT Max Nom Min Units
0, 1 34.3ΩRON34PD IOL @ 0.2 × VDDQ14.0 8.3 7.5 mA
IOL @ 0.5 × VDDQ 23.3 20.8 18.7 mA
IOL @ 0.8 × VDDQ 37.3 33.3 23.5 mA
RON34PU IOH @ 0.2 × VDDQ 37.3 33.3 23.5 mA
IOH @ 0.5 × VDDQ 23.3 20.8 18.7 mA
IOH @ 0.8 × VDDQ14.0 8.3 7.5 mA
Table 41: 34Ω Output Driver Sensitivity Definition
Symbol Min Max Units
RON @ 0.8 × VDDQ 0.9 - dRONdTH × |ΔT| - dRONdVH × |ΔV| 1.1 + dRONdTH × |ΔT| + dRONdVH × |ΔV| RZQ/7
RON @ 0.5 × VDDQ 0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV| 1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV| RZQ/7
RON @ 0.2 × VDDQ 0.9 - dRONdTL × |ΔT| - dRONdVL × |ΔV| 1.1 + dRONdTL × |ΔT| + dRONdVL×|ΔV| RZQ/7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 60 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Driver Impedance
Alternative 40 Ohm Driver
Notes: 1. Tolerance limits assume RZQ of 240Ω (±1%) and are applicable after proper ZQ calibration
has been performed at a stable temperature and voltage (VDDQ = VDD, VSSQ = VSS). Refer to
“40 Ohm Driver Output Sensitivity” on page 60 if either the temperature or the voltage
changes after calibration.
2. Measurement definition for mismatch between pull-up and pull-down (MMPUPD). Measure
both RONPU and RONPD at 0.5 × VDDQ:
3. For IT and AT devices, the minimum values are derated by six% when the device operates
between –40°C and 0°C (TC ).
40 Ohm Driver Output Sensitivity
If either the tem peratur e or the volt age changes after I/O calibrati on, the tolerance limits
listed in Table 43 can be expecte d to wid en according to Tab le 44 and Table 45 on
page 61.
Notes: 1. ΔT = T - T(@ calibration), ΔV = VDDQ - VDDQ(@ calibration), and VDD = VDDQ.
Table 42: 34Ω Output Driver Voltage and Temperature Sensitivity
Change Min Max Units
dRONdTM 0 1.5 %/°C
dRONdVM 0 0.13 %/mV
dRONdTL 0 1.5 %/°C
dRONdVL 0 0.13 %/mV
dRONdTH 0 1.5 %/°C
dRONdVH 0 0.13 %/mV
Table 43: 40Ω Driver Impedance Characteristics
MR1[5,1] RON Resistor VOUT Min Nom Max Units Notes
0,0 40ΩRON40PD 0.2 × VDDQ 0.6 1.0 1.1 RZQ/6 1, 2
0.5 × VDDQ 0.9 1.0 1.1 RZQ/6 1, 2
0.8 × VDDQ 0.9 1.0 1.4 RZQ/6 1, 2
RON40PU 0.2 × VDDQ 0.9 1.0 1 .4 RZQ/6 1, 2
0.5 × VDDQ 0.9 1.0 1.1 RZQ/6 1, 2
0.8 × VDDQ 0.6 1.0 1.1 RZQ/6 1, 2
Pull-up/pull-down mismatch (MMPUPD)0.5×VDDQ –10% n/a 10 % 1, 2
Table 44: 40Ω Output Driver Sensitivity Definition
Symbol Min Max Units
RON @ 0.8 × VDDQ 0.9 - dRONdTH × |ΔT| - dRONdVH × |ΔV| 1.1 + dRONdTH × |ΔT| + dRONdVH × |ΔV| RZQ/6
RON @ 0.5 × VDDQ 0.9 - dRONdTM × |ΔT| - dRONdVM × |ΔV| 1.1 + dRONdTM × |ΔT| + dRONdVM × |ΔV| RZQ/6
RON @ 0.2 × VDDQ 0.9 - dRONdTL × |ΔT| - dRONdVL × |ΔV| 1.1 + dRONdTL × |ΔT| + dRONdVL×|ΔV| RZQ/6
MMPUPD
RONPU RONPD
RONNom
-------------------------------------x100=
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 61 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Characteristics and Operating Conditions
Output Characteristics and Operating Conditions
The DRAM uses both single-ended and differential output drivers. The single-ended
output driver is summ arized in Table 46 while the differential output driver is summa-
rized in Table 47 on page 62.
Notes: 1. RZQ of 240 Ω (±1%) with RZQ/7 enabled (def ault 34Ω driver) and is applicable after proper
ZQ calibration has been performed at a stable temperature and voltage (VDDQ=VDD,
VSSQ=VSS).
2. VTT = VDDQ/2.
3. See Figure 31 on page 63 for the test load configuration.
4. The 6 V/ns maximum is applicable for a single DQ signal when it is switching from either
HIGH to LOW or LOW to HIGH while the remaining DQ signals in the same byte lane are
either all static or all switching the opposite dire ction. For all othe r D Q signal switching
combinations, the maximum limit of 6 V/ns is reduced to 5V/ns.
5. See Table 36 on page 58 for IV curve linearity. Do not use AC test load.
6. See Table 48 on page 64 for output slew rate.
7. See Table 36 on page 58 for additional information.
8. See Figure 29 on page 62 for an example of a single-ended output signal.
Table 45: 40Ω Output Driver Voltage and Temperature Sensitivity
Change Min Max Unit
dRONdTM 0 1.5 %/°C
dRONdVM 0 0.15 %/mV
dRONdTL 0 1.5 %/°C
dRONdVL 0 0.15 %/mV
dRONdTH 0 1.5 %/°C
dRONdVH 0 0.15 %/mV
Table 46: Single-Ended Output Driver Characteristics
All voltages are referenced to Vss
Parameter/Condition Symbol Min Max Units Notes
Output leakage current: DQ are disabled;
0V VOUT VDDQ; ODT is disabled; ODT is HIGH IOZ –5 +5 µA 1
Output slew rate: Single-e nded; For rising and falling
edges, measure between VOL(AC) = VREF - 0.1 × VDDQ and
VOH(AC)=VREF +0.1×VDDQ
SRQSE 2.5 6V/ns 1, 2, 3, 4
Single-ended DC high-level output voltage VOH(DC)0.8×VDDQV1, 2, 5
Single-ended DC mid-point level output voltage VOM(DC)0.5×VDDQV1, 2, 5
Single-ended DC low-level output voltage VOL(DC)0.2×VDDQV1, 2, 5
Single-ended AC high-level output voltage VOH(AC)VTT + 0.1 × VDDQ V 1, 2, 3, 6
Single-ended AC low-level output voltage VOL(AC)VTT - 0.1 × VDDQ V 1, 2, 3, 6
Delta RON betwee n pull-up and pull-down for DQ/DQS MMPUPD –10 +10 % 1, 7
Test load for AC timing and output slew rates Output to VTT (VDDQ/2) via 25Ω resistor 3
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 62 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Characteristics and Operating Conditions
Notes: 1. RZQ of 240 Ω (±1%) with RZQ/7 enabled (def ault 34Ω driver) and is applicable after proper
ZQ calibration has been performed at a stable temperature and voltage (VDDQ=VDD,
VSSQ=VSS).
2. VREF = VDDQ/2.
3. See Figure 31 on page 63 for the test load configuration.
4. See Table 49 on page 65 for the output slew rate.
5. See Table 36 on page 58 for additional information.
6. See Figure 30 on page 63 for an example of a differential output signal.
Figure 29: DQ Output Signal
Table 47: Differential Output Driver Characteristics
All voltages are referenced to Vss
Parameter/Condition Symbol Min Max Units Notes
Output leakage current: DQ are disabled;
0V VOUT VDDQ; ODT is disabled; ODT is HIGH IOZ –5 +5 µA 1
Output slew rate: Differential; For rising and falling
edges, measure between VOLDIFF(AC) = –0.2 × VDDQ
and VOHDIFF(AC) = +0.2 × VDDQ
SRQDIFF 512 V/ns 1
Output dif ferential cross-point voltage VOX(AC)VREF - 150 VREF + 150 mV 1, 2, 3
Differential high-level output voltage VOHDIFF(AC)+0.2×VDDQV1, 4
Differential low-level ou tput voltage VOLDIFF(AC)–0.2×VDDQV1, 4
Delta RON betwee n pull-up and pull-down for DQ/DQS MM PUPD –10 +10 % 1, 5
Test load for AC timing and output slew rates Output to VTT (VDDQ/2) via 25Ω resistor 3
VOH(AC)
MIN output
MAX output
VOL(AC)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 63 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Characteristics and Operating Conditions
Figure 30: Differential Output Signal
Reference Output Load
Figure 31 represents the effective reference load of 25Ω used in defining the relev ant
device AC timing parameters (except ODT reference timing) as well as the output slew
rate measurements. It is not intended to be a precise representation of a particular
system environment or a depiction of the actual load presented by a production tester.
System designers should use IBIS or other simulation tools to correlate the timing refer-
ence load to a system environment.
Figure 31: Reference Output Load for AC Timing and Output Slew Rate
V
OH
(
DIFF
)
MIN output
MAX output
V
OL
(
DIFF
)
V
OX
(
AC
) MAX
V
OX
(
AC
) MIN
X
X
X
X
Timing reference point
DQ
DQS
DQS#
DUT
V
REF
V
TT
= V
DD
Q/2
V
DD
Q/2
ZQ
RZQ = 240Ω
V
SS
R
TT
= 25Ω
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 64 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Characteristics and Operating Conditions
Slew Rate Definitions for Single-Ended Output Signals
The single-ended output driver is summarized in Table 46 on page 61. With the refer-
ence load for timing measurements, the output slew rate for falling and rising edges is
defined and measured between VOL(AC) and VOH(AC) for single-ended signals, as shown
in Table 48 and Figure32.
Figure 32: Nominal Slew Rate Definition for Single-Ended Output Signals
Ta ble 48: Single-Ended Output Slew Rate Definition
Single-Ended Output
Slew Rates
(Linear Signals) Measured
CalculationOutput Edge From To
DQ Rising VOL(AC)VOH(AC)
Falling VOH(AC)VOL(AC)
VOH(AC) - VOL(AC)
ΔTRSE
VOH(AC) - VOL(AC)
ΔTFSE
ΔTRSE
ΔTFSE
VOH(AC)
VOL(AC)
VTT
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 65 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Output Characteristics and Operating Conditions
Slew Rate Definitions for Differential Output Signals
The differential output driver is summarized in Table 47 on page 62
.
With the reference
load for timing measurements, the output slew rate for falling and rising edges is defined
and measured between VOL(AC) and VOH(AC) for differential signals, as sho wn in Table 49
and Figure33.
Figure 33: Nominal Differential Output Slew Rate Definition for DQS, DQS#
Table 49: Differential Output Slew Rate Definition
Differential Output Slew
Rates
(Linear Signals) Measured
CalculationOutput Edge From To
DQS, DQS# Rising VOLDIFF(AC)VOHDIFF(AC)
Falling VOHDIFF(AC)VOLDIFF(AC)
VOHDIFF(AC) - VOLDIFF(AC)
ΔTRDIFF
VOHDIFF(AC) - VOLDIFF(AC)
ΔTFDIFF
ΔTRDIFF
ΔTFDIFF
VOH(DIFF)AC
VOL(DIFF)AC
0
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 66 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Speed Bin Tables
Notes: 1. tREFI depends on TOPER.
2. The CL and CWL settings result in tCK requirements. When making a selection of tCK, both
CL and CWL requirement settings need to be fulfilled.
3. Reserved settings are not allowed.
Table 50: DDR3-800 Speed Bins
DDR3-800 Speed Bin -25E -25
Units Notes
CL-tRCD-tRP 5-5-5 6-6-6
Parameter Symbol Min Max Min Max
ACTIVATE to internal READ or WRITE delay
time
tRCD 12.5 15 ns
PRECHARGE command period tRP 12.5 15 ns
ACTIVATE-to-ACTIVATE or REFRESH
command period
tRC 50 52.5 ns
ACTIVATE-to-PRECHARGE command period tRAS 37.5 60ms 37.5 60ms ns 1
CL = 5 CWL = 5 tCK (AVG) 2.5 3.3 3.0 3.3 ns 2, 3
CL = 6 CWL = 5 tCK (AVG) 2.5 3.3 2.5 3.3 ns 2
Supported CL settings 5, 6 5, 6 CK
Supported CWL setti ngs 5 5 CK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 67 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Notes: 1. tREFI depends on TOPER.
2. The CL and CWL settings result in tCK requirements. When making a selection of tCK, both
CL and CWL requirement settings need to be fulfilled.
3. Reserved settings are not allowed.
Table 51: DDR3-1066 Speed Bins
DDR3-1066 Speed Bin -187E -187
Units Notes
CL-tRCD-tRP 7-7-7 8-8-8
Parameter Symbol Min Max Min Max
ACTIVATE to internal RE AD or WRITE
delay time
tRCD 13.125 15 ns
PRECHARGE command period tRP 13.125 15 ns
ACTIVATE-to-ACTIVATE or REFRESH
command period
tRC 50.625 52.5 ns
ACTIVATE-to-PRECHARGE command
period
tRAS 37.5 60ms 37.5 60ms ns 1
CL = 5 CWL = 5 tCK (AVG) 3.0 3.3 3.0 3.3 ns 2, 3
CWL = 6 tCK (AVG) Reserved Reserved ns 3
CL = 6 CWL = 5 tCK (AVG) 2.5 3.3 2.5 3.3 ns 2
CWL = 6 tCK (AVG) Reserved Reserved ns 2, 3
CL = 7 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG) 1.875 <2.5 Reserved ns 2, 3
CL = 8 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG ) 1.875 <2.5 1.875 <2.5 ns 2
Supported CL settings 5, 6, 7, 8 5, 6, 8 CK
Supported CWL settings 5, 6 5, 6 CK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 68 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Notes: 1. tREFI depends on TOPER.
2. The CL and CWL settings result in tCK requirements. When making a selection of tCK, both
CL and CWL requirement settings need to be fulfilled.
3. Reserved settings are not allowed.
Table 52: DDR3-1333 Speed Bins
DDR3-1333 Speed Bin -15E -15
Units Notes
CL-tRCD-tRP 9-9-9 10-10-10
Parameter Symbol Min Max Min Max
ACTIVATE to internal RE AD or WRITE
delay time
tRCD 13.125 15 ns
PRECHARGE command period tRP 13.125 15 ns
ACTIVATE-to-ACTIVATE or REFRESH
command period
tRC 49.5 51 ns
ACTIVATE-to-PRECHARGE command
period
tRAS 36 60ms 36 60ms ns 1
CL = 5 CWL = 5 tCK (AVG) 3.0 3.3 3.0 3.3 ns 2, 3
CWL = 6, 7 tCK (AVG) Reserved Reserved ns 3
CL = 6 CWL = 5 tCK (AVG) 2.5 3.3 2.5 3.3 ns 2
CWL = 6 tCK (AVG) Reserved Reserved ns 2, 3
CWL = 7 tCK (AVG) Reserved Reserved ns 3
CL = 7 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG) 1.875 <2.5 Reserve d ns 2, 3
CWL = 7 tCK (AVG) Reserved Reserved ns 2, 3
CL = 8 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG) 1.875 <2.5 1.875 <2.5 ns 2
CWL = 7 tCK (AVG) Reserved Reserved ns 2, 3
CL = 9 CWL = 5, 6 tCK (AVG) Reserved Reserved ns 3
CWL = 7 tCK (AVG) 1.5 <1.8 75 Reserved ns 2, 3
CL = 10 CWL = 5, 6 tCK (AVG) Reserved Reserved ns 3
CWL = 7 tCK (AVG) 1.5 <1.875 1.5 <1.875 ns 2
Supported CL settings 5, 6, 7, 8, 9, 10 5, 6, 8, 10 CK
Supported CWL setti ngs 5, 6, 7 5, 6, 7 CK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 69 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Notes: 1. tREFI depends on TOPER.
2. The CL and CWL settings result in tCK requirements. When making a selection of tCK, both
CL and CWL requirement settings need to be fulfilled.
3. Reserved settings are not allowed.
Table 53: DDR3-1600 Speed Bins
DDR3-1600 Speed Bin -125E -125
Units Notes
CL-tRCD-tRP 10-10-10 11-11-11
Parameter Symbol Min Max Min Max
ACTIVATE to internal RE AD or WRITE
delay time
tRCD 12.5 13.125 ns
PRECHARGE command period tRP 12.5 13.125 ns
ACTIVATE-to-ACTIVATE or REFRESH
command period
tRC 47.5 48.75 ns
ACTIVATE-to-PRECHARGE command
period
tRAS 3560ms3560msns 1
CL = 5 CWL = 5 tCK (AVG) 2.5 3.3 3.0 3.3 ns 2, 3
CWL = 6, 7, 8 tCK (AVG) Reserved Reserved ns 3
CL = 6 CWL = 5 tCK (AVG) 2.5 3.3 2.5 3.3 n s 2
CWL = 6 tCK (AVG) Reserved Reserved ns 2, 3
CWL = 7, 8 tCK (AVG) Reserved Reserved ns 3
CL = 7 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG) 1.875 <2.5 1.875 <2.5 ns 2, 3
CWL = 7 tCK (AVG) Reserved Reserved ns 2, 3
CWL = 8 tCK (AVG) Reserved Reserved ns 3
CL = 8 CWL = 5 tCK (AVG) Reserved Reserved ns 3
CWL = 6 tCK (AVG) 1.875 <2.5 1.875 <2.5 ns 2
CWL = 7 tCK (AVG) Reserved Reserved ns 2, 3
CWL = 8 tCK (AVG) Reserved Reserved ns 2, 3
CL = 9 CWL = 5, 6 tCK (AVG) Reserved Reserved ns 3
CWL = 7 tCK (AVG) 1.5 <1.875 1.5 <1.875 ns 2, 3
CWL = 8 tCK (AVG) Reserved Reserved ns 2, 3
CL = 10 CWL = 5, 6 tCK (AVG) Reserved Reserved ns 3
CWL = 7 tCK (AVG) 1.5 <1.875 1.5 <1.875 ns 2
CWL = 8 tCK (AVG) 1.25 <1.5 Reserved ns 2, 3
CL = 11 CWL = 5, 6, 7 tCK (AVG) Reserved Reserved ns 3
CWL = 8 tCK (AVG)1.25<1.51.25<1.5 ns 2
Supported CL se ttings 5, 6, 7, 8, 9, 10, 11 5, 6, 7, 8, 9, 10, 11 CK
Supported CWL settings 5, 6, 7, 8 5, 6, 7, 8 CK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 70 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 1 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
Clock Timing
Clock period average:
DLL disable mode TC = 0°C to 85°C tCKDLL_DIS 87,80087,80087,80087,800ns9, 42
TC = >85°C to 95°C 83,90083,90083,90083,900ns42
Clock period average: DLL enable mode tCK (AVG) See “Speed Bin Tables” on page 66 for tCK range allowed ns 10, 11
High pulse width average tCH (AVG) 0.47 0.53 0.47 0.530.470.530.470.53CK12
Low pulse width average tCL (AVG) 0.47 0.53 0.47 0.530.470.530.470.53CK12
Clock period jitter DLL locked tJITPER –100 100 –90 90 –80 80 –70 70 ps 13
DLL locking tJITPER, LCK –90 90 –80 80 –70 70 –60 60 ps 13
Clock absolute perio d tCK(ABS) MIN = tCK (AVG) MIN + tJITPER MIN; MAX = tCK (AVG) MA X + tJITPER MAX ps
Clock absolute hi gh pulse width tCH (ABS) 0.43 0.43 0.43 0.43 tCK
(AVG) 14
Clock absolute low pulse width tCL (ABS) 0.43 0.43 0.43 0.43 tCK
(AVG) 15
Cycle-to-cycle jitter DLL locked tJITCC 200 180 160 140 ps 16
DLL locking tJITCC, LCK 180 160 140 120 ps 16
Cumulative error
across 2 cycles tERR2PER –147 147 –132 132 –118 118 –103 103 ps 17
3 cycles tERR3PER –175 175 –157 157 –140 140 –122 122 ps 17
4 cycles tERR4PER –194 194 –175 175 –155 155 –136 136 ps 17
5 cycles tERR5PER –209 209 –188 188 –168 168 –147 147 ps 17
6 cycles tERR6PER –222 222 –200 200 –177 177 –155 155 ps 17
7 cycles tERR7PER –232 232 –209 209 –186 186 –163 163 ps 17
8 cycles tERR8PER –241 241 –217 217 –193 193 –169 169 ps 17
9 cycles tERR9PER –249 249 –224 224 –200 200 –175 175 ps 17
10 cycles tERR10PER –257 257 –231 231 –205 205 –180 180 ps 17
11 cycles tERR11PER –263 263 –237 237 –210 210 –184 184 ps 17
12 cycles tERR12PER –269 269 –242 242 –215 215 –188 188 ps 17
n = 13, 14 . . . 49, 50
cycles
tERRnPER tERRnPER MIN = (1 + 0.68ln[n]) × tJITPER MIN
tERRnPER MAX = (1 + 0.68ln[n]) × tJITPER MAX ps 17
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 71 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
DQ Input Timing
Data setup time to
DQS, DQS# Base (specification) tDS
AC175 7525–––––ps18, 19
VREF @ 1 V/ns 250200–––––ps19, 20
Data setup time to
DQS, DQS# Base (specification) tDS
AC150 125 75 30 10 ps 18, 19
VREF @ 1 V/ns 275 250 180 160 ps 19, 20
Data hold time from
DQS, DQS# Base (specification) tDH
AC100 150 100 65 45 ps 18, 19
VREF @ 1 V/ns 250 200 165 145 ps 19, 20
Minimum data pulse width tDIPW 600 490 400 360 ps 41
DQ Output Timing
DQS, DQS# to DQ skew, per access tDQSQ 200 150 125 100 ps
DQ output hold time from DQS, DQS# tQH 0.38 0.38 0.38 0.38 tCK
(AVG) 21
DQ Low-Z time from CK, CK# tLZ (DQ) –800 400 –600 300 –500 250 –450 225 ps 22, 23
DQ High-Z time from CK, CK# tHZ (DQ) 400 300 250 225 ps 22, 23
DQ Strobe Input Timing
DQS, DQS# rising to CK, CK# rising tDQSS –0.25 0.25 –0.25 0.25 –0.25 0.25 –0.27 0.27 CK 25
DQS, DQS# differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 CK
DQS, DQS# differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 CK
DQS, DQS# falling setup to CK, CK# rising tDSS 0.2 0.2 0.2 0.18 CK 25
DQS, DQS# falling hold from CK, CK# rising tDSH 0.2 0.2 0.2 0.18 CK 25
DQS, DQS# differential WRITE preamble tWPRE 0.9 0.9 0.9 0.9 CK
DQS, DQS# differential WRITE postamble tWPST 0.3 0.3 0.3 0.3 CK
DQ Strobe Output Timing
DQS, DQS# rising to/from rising CK, CK# tDQSCK –400 400 –300 300 –255 255 –225 225 ps 23
DQS, DQS# ri sing to/f rom rising CK, CK# when
DLL is disabled
tDQSCK
DLL_DIS 110110110110ns26
DQS, DQS# differential output high time tQSH 0.38 0.38 0.40 0.40 CK 21
DQS, DQS# differential output low time tQSL 0.38 0.38 0.40 0.40 CK 21
DQS, DQS# Low-Z time (RL - 1) tLZ (DQS) –800 400 –600 300 –500 250 –450 225 ps 22, 23
DQS, DQS# High-Z time (RL + BL/2) tHZ (DQS) 400 300 250 225 ps 22, 23
DQS, DQS# differential READ preamble tRPRE 0.9 Note 24 0.9 Note 24 0.9 Note 24 0.9 Note 24 CK 23, 24
DQS, DQS# differential READ postamble tRPST 0.3 Note 27 0.3 Note 27 0.3 Note 27 0.3 Not e 27 CK 23, 27
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 2 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 72 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Command and Address Timing
DLL locking time tDLLK 512 512 512 512 CK 28
CTRL, CMD, ADDR
setup to CK,CK# Base (specification) tIS
AC175 200 125 65 45 ps 29, 30
VREF @ 1 V/ns 375 300 240 220 ps 20, 30
CTRL, CMD, ADDR
setup to CK,CK# Base (specification) tIS
AC150 350 275 190 170 ps 29, 30
VREF @ 1 V/ns 500 425 340 320 ps 20, 30
CTRL, CMD, ADDR
hold from CK,CK# Base (specification) tIH
DC100 275 200 140 120 ps 29, 30
VREF @ 1 V/ns 375 300 240 220 ps 20, 30
Minimum CTRL, CMD, ADDR pulse width tIPW 900 780 620 560 ps 41
ACTIVATE to interna l READ or WRITE delay tRCD See “Speed Bin Tables” on page 66 for tRCD ns 31
PRECHARGE command period tRP See “Speed Bin Tables” on page 66 for tRP ns 31
ACTIVATE-to-PRECHARGE command period tRAS See “Speed Bin Tables” on page 66 for tRAS ns 31, 32
ACTIVATE-to-ACTIVATE command period tRC See “Speed Bin Tables” on page 66 for tRC ns 31
ACTIVATE-to-
ACTIVATE minimum
command period
1KB page size tRRD MIN = greater of
4CK or 10ns MIN = greater of
4CK or 7.5ns MIN = greater of
4CK or 6ns MIN = greater of
4CK or 6ns CK 31
2KB page size MIN = greater of 4CK or 10ns MIN = greater of 4CK or 7.5ns CK 31
Four ACTIVATE windows for 1KB page size tFAW 40 37.5 30 30 ns 31
Four ACTIVATE windows for 2KB page size 50 50 45 40 ns 31
Write recovery time tWR MIN = 15ns; MAX = n/a ns 31,
32, 33
Delay from start of internal WRITE transaction
to internal READ command
tWTR MIN = greater of 4CK or 7.5ns; MAX = n/a CK 31, 34
READ-to-PRECHARGE time tRTP MIN = greater of 4CK or 7.5ns; MAX = n/a CK 31, 32
CAS#-to-CAS# command delay tCCD MIN = 4CK; MAX = n/a CK
Auto precharge write recovery + precharge
time
tDAL MIN = WR + tRP/tCK (AVG); MAX = n/a CK
MODE REGISTER SET command cycle time tMRD MIN = 4CK; MAX = n/a CK
MODE REGISTER SET command update delay tMOD MIN = greater of 12CK or 15ns; MAX = n/a CK
MULTIPURPOSE REGISTER READ burst end to
mode register set for multipurpose register
exit
tMPRR MIN = 1CK; MAX = n/a C K
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 3 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 73 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Calibration Timing
ZQCL command: Long
calibration time POWER-UP and RESET
operation
tZQINIT 512 512 512 512 CK
Normal operation tZQOPER 256 256 256 256 CK
ZQCS command: Short calibration time tZQCS 64 64 64 64 CK
Initialization and Reset Timing
Exit reset from CKE HIGH to a valid command tXPR M IN = greater of 5CK or tRFC + 10ns; MAX = n/a CK
Begin power supply ramp to power supplies
stable
tVDDPR MIN = n/a; MAX = 200 ms
RESET# LOW to power supplies stable tRPS MIN = 0; MAX = 200 ms
RESET# LOW to I/O and RTT High-Z tIOz MIN = n/a; MAX = 20 ns 35
Refresh Timing
REFRESH-to-ACTIVATE or REFRESH command
period
tRFC MIN = 110; MAX = 9 × tREFI (REFRESH-to-REFRESH command period) ns
Maximum refresh
period TC 85°C 64 (1X) ms 36
TC > 85°C 32 (2X) ms 36
Maximum average
periodic refresh T C 85°C tREFI 7.8 (64ms/8,19 2) µs 36
TC > 85°C 3.9 (32ms/8,1 9 2) µs 36
Self Refresh Timing
Exit self refresh to commands not requiring a
locked DLL
tXS MIN = great er of 5CK or tRFC + 10ns; MAX = n/a CK
Exit self refresh to commands requiring a
locked DLL
tXSDLL MIN = tDLLK (MIN); MAX = n/a CK 28
Minimum CKE low pulse width for self refresh
entry to self refresh exit timing
tCKESR MIN = tCKE (MIN) + CK; MAX = n/a CK
Valid clocks after self refresh entry or power-
down entry
tCKSRE MIN = greate r of 5CK or 10ns; MAX = n/a CK
Valid clocks before self refresh exit, power-
down exit, or reset exit
tCKSRX MIN = greater of 5CK or 10ns; MAX = n/a CK
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 4 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 74 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Power-Down Timing
CKE MIN pulse width tCKE (MIN) Greater of 3CK or
7.5ns Greater of 3CK or
5.625ns Greater of 3CK or
5.625ns Greater of 3CK or
5ns CK
Command pass disable delay tCPDED MIN = 1; MAX = n/a CK
Power-down entry to power-down exit timing tPD MIN = tCKE (MIN); MAX = 60ms CK
Begin power-down period prior to CKE
registered HIGH
tANPD WL - 1CK CK
Power-dow n en try period : ODT either
synchronous or asynchronous PDE Greater of tANPD or tRFC - REFRESH command to CKE LOW time CK
Power-down exit period: ODT either
synchronous or asynchronous PDX tANPD + tXPDLL CK
Power-Down Entry Minimum Timing
ACTIVATE command to power-down entry tACTPDEN MIN = 1 CK
PRECHARGE/PRECHARGE ALL command to
power-down entry
tPRPDEN MIN = 1 CK
REFRESH command to power-down entry tREFPDEN MIN = 1 CK 37
MRS command to power-down entry tMRSPDEN MIN = tMOD (MIN) CK
READ/READ with auto precharge command to
power-down entry
tRDPDEN MIN = RL + 4 + 1 CK
WRITE command to
power-down entry BL8 (OTF, MRS)
BC4OTF
tWRPDEN MIN = WL + 4 + tWR/tCK (AVG) CK
BC4MRS tWRPDEN MIN = WL + 2 + tWR/tCK (AVG) CK
WRITE with auto
precharge command
to power-down entry
BL8 (OTF, MRS)
BC4OTF
tWRAPDEN MIN = WL + 4 + WR + 1 CK
BC4MRS tWRAPDEN MIN = WL + 2 + WR + 1 CK
Power-Down Exit Timing
DLL on, any valid command, or DLL off to
commands not requiring lo cked DLL
tXP MIN = greater of 3CK or 7.5ns;
MAX = n/a MIN = greater of 3CK or 6ns;
MAX = n/a CK
Precharge power-down with DLL off to
commands requiring a lo cked DLL
tXPDLL MIN = greater of 10CK or 24ns; MAX = n/a CK 28
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 5 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D3.fm - Rev G 2/09 EN 75 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
ODT Timing
RTT synchronous turn-on delay ODTL on CWL + AL - 2CK CK 38
RTT synchronous turn-off delay ODTL off CWL + AL - 2CK CK 40
RTT turn-on from ODTL on reference tAON –400 400 –300 300 –250 250 –225 225 ps 23, 38
RTT turn-off from ODTL off reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 CK 39, 40
Asynchronous RTT turn-on de lay
(power-down with DLL off)
tAONPD MIN = 2; MAX = 8.5 ns 38
Asynchronous RTT turn-off delay
(power-down with DLL off)
tAOFPD MIN = 2; MAX = 8.5 ns 40
ODT HIGH time with WRITE command and
BL8 ODTH8 MIN = 6; MAX = n/a CK
ODT HIGH time without WRITE command or
with WRITE command and BC4 ODTH4 MIN = 4; MAX = n/a CK
Dynamic ODT Timing
RTT_NOM-to-RTT_WR change skew ODTLCNW WL - 2CK CK
RTT_WR-to-RTT_NOM change skew - BC4 ODTLCNW4 4CK + ODTL off CK
RTT_WR-to-RTT_NOM change skew - BL8 ODT L CNW8 6CK + ODTL off CK
RTT dynamic chan ge skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 0.3 0.7 CK 39
Write Leveling Timing
First DQS, DQS# rising edge tWLMRD 40 40 40 40 CK
DQS, DQS# delay tWLDQSEN 25 25 25 25 CK
Write leveling setup from rising CK, CK#
crossing to rising DQS, DQS# crossing
tWLS 325 245 195 165 ps
Write leveling ho ld fro m rising DQS, DQ S#
crossing to rising CK, CK# crossing
tWLH 325 245 195 165 ps
Write leveling ou tp ut de lay tWLO09090907.5ns
Write leveling ou tp ut error tWLOE02020202ns
Ta ble 54: Electrical Characteristics and AC Operating Conditions (Sheet 6 of 6)
Notes: 1–8 apply to the entire table; notes appear on page 76
Parameter Symbol
DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600
Units NotesMin Max Min Max Min Max Min Max
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 76 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Notes 1. Parameters are applicable with 0°C TC +95°C and VDD/VDDQ = +1.5V ±0.075V.
2. All voltages are referenced to VSS.
3. Output timings are only valid for RON34 output buffer selection.
4. Unit “tCK (AVG)” represents the actual tCK (AVG) of the input clock under operation.
Unit “CK” represents one clock cycle of the input clock, counting the actual clock
edges.
5. AC timing and IDD tests may use a VIL-to-VIH swing of up to 900mV in the test envi-
ronment, but input timing is still referenced to VREF (except tIS, tIH, tDS, and tDH use
the AC/DC trip points and CK, CK# and DQS, DQS# use their crossing points). The
minimum slew rate for the input signals used to test the device is 1 V/ns for single-
ended inputs and 2 V/ ns for dif ferential inputs in the range between VIL(AC) and
VIH(AC).
6. All timings that use time-based values (ns, µs, ms) should use tCK (AVG) to determine
the correct number of clocks (Table 54 on page 70 uses “CK” or “tCK [AVG]” inter-
changeably). In the case of noninteger results, all minimum limits are to be rounded
up to the nearest whole integer, and all maximum limits are to be rounded down to
the nearest whole integer.
7. The use of “strobe” or “DQSDIFF” refers to the DQS and DQS# differential crossing
point when DQS is the rising edge . The use of “clock” or “CK” r efe rs to the CK and CK#
differential crossing point when CK is the rising edge.
8. This output load is used for all AC timing (except ODT refe rence timing) and slew
rates. The actual test load may be different. The output signal volt age reference point
is VDDQ/2 for single-ended signals and the crossing point for differential signals (see
Figure 31 on page63).
9. When operating in DLL disable mode, Micron does not warrant compliance with nor-
mal mode timings or functional ity.
10. The clocks tCK (AVG) is the average clock over any 200 conse c utive cl ocks and
tCK(AVG) MIN is the smal lest clock rate allowed, with the exception of a deviation due
to clock jitter. Input clock jitter is allowed provided it does not exceed values specified
and must be of a random Gaussian distribution in nature.
11. Spread spectrum is not included in the jitter specification values. However, the input
clock can accommodate spread-spectrum at a sweep rate in the rang e of 20–60 kHz
with an additional 1% of tCK (AVG) as a long -term jitter component; however, the
spread-spectrum may not use a clock rate below tCK (AVG) MIN.
12. The clocks tCH (AVG) and tCL (AVG) are the average half clock period over any 200
consecutive cloc ks and is the sm allest c lock half period allowed, with the exception of
a deviation due to clock jitter. Input clock jitter is allowed provided it does not exceed
values specified and must be of a r a ndom Gaussian distribution in nature.
13. The period jitter (tJITPER) is the maximum deviation in the clock period from the aver-
age or nominal clock. It is allowed in either the positive o r negative direction.
14. tCH(ABS) is the absolute instantaneous clock high pulse width as measured from one
rising edge to the following falling edge.
15. tCL(ABS) is the absolute instantaneous clock low pulse width as measured from one
falling edge to the following rising edge.
16. The cycle-t o-cycle jitter (tJITCC) is the amount the clock period can deviate from one
cycle to the next. It is important to keep cycle-to-cycle jitter at a minimum during the
DLL locking time.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 77 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
17. The cumulative jitter error (tERRnPER), wher e n is the number of clocks betw een 2 and
50, is the amount of clock time allowed to accumulate consecutively away from the
average clock over n number of clock cycles.
18. tDS (base) and tDH (base) values are for a single-ended 1 V/ns DQ slew rate and
2 V/ns differential DQS, DQS# slew rate .
19. These parameters are measured from a data signal (DM, DQ0, DQ1, and so forth)
transition edge to its respective data strobe signal (DQS, DQS#) crossing.
20. The setup and hold times are l isted conv erting the bas e specifi cation v alues (to which
derating tables apply) to VREF when the slew rate is 1 V/ns. These values, with a slew
rate of 1 V/ns, are for ref erence only.
21. When the device is operated with input clock jitter, this parameter needs to be der-
ated b y the actual tJITPER (larger of tJITPER(MIN) or tJITPER(MAX) of the input clock
(output deratings are relative to the SDRAM input clock).
22. Single-ended signal parameter.
23. The DRAM output timing is aligned to the nominal or average clock. Most output
parameters must be derated by the actual jitter error when input clock jitter is pres-
ent, even wh en w ithin specification. This results in each parameter becoming larger.
The following paramete rs are required to be derated by subtracting tERR10PER (MAX):
tDQSCK (MIN), tLZ (DQS) MIN, tLZ (DQ) MIN, and tAON (MIN). The following
parameters are required to be derated by subtracting tERR10PER (MI N):
tDQSCK (MAX), tHZ (MAX), tLZ (DQS) MAX, tLZ(DQ) MAX, and tAON (MAX). Th e
parameter tRPRE (MIN) is der ated b y subtra cting tJITPER (MAX), while tRPRE(MAX) is
derated by subtracting tJITPER (MIN).
24. The maximum preamble is bound by tLZDQS (MAX).
25. These parameters are measured from a data strobe signal (DQS, DQS#) crossing to its
respe ctive clock signal (CK, CK#) crossing. The specific ation values ar e not affected b y
the amount of clock jitter applied, as these are relative to the clock signal crossing.
These parameters should be met whether clock jitter is present.
26. The tDQSCK DLL_DIS parameter begins CL + AL - 1 cycles after the READ command.
27. The maximum postamb le is bo und by tHZDQS (MAX).
28. Commands requi ring a locked DLL are: READ (and RDAP) and synchronous ODT
commands. In addition, after any change of latency tXPDLL, timing must be met.
29. tIS (base) and tIH (base) values are for a single -ended 1 V/ns control/command/
address slew rate and 2V/ns CK, CK# differential slew rate.
30. These parameters are measured from a command/address signal transition edge to
its r espective cloc k (CK, CK#) signal cr ossing. The specifi cation values ar e not affected
by the amount of clock ji tter applied as the setup and hold times are rela tive to the
clock signal crossing that latche s the command/addr ess . These parameters should be
met whether clock jitter is present.
31. For these parameters, the DDR3 SDRAM device supports tnPARAM (nCK) =
RU(tPARAM [ns]/tCK[AVG] [ns]), assuming all input clock jitter specifications are sat-
isfied. For example, the device will support tnRP (nCK) = RU(tRP/tCK[AVG]) if all input
clock jitter specifications are met. This means for DDR3-800 6-6-6, of which
tRP = 15ns, the device will support tnRP = RU(tRP/tCK[AVG]) = 6 as long as the input
clock jitter specifications are met. That is, the PRECHARGE command at T0 and the
ACTIVATE command at T0 + 6 are valid even if six clocks are less than 15ns due to
input clock jitter.
32. During READs and WRITEs with auto precharge, the DDR3 SDRAM will hold off the
internal PRECHARGE command until tRAS(MIN) has been satisfied.
33. When operating in DLL disable mode, the greater of 4CK or 15ns is satisfied for tWR.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 78 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
34. The start of the w rite recovery ti me is defi ne d as follows:
For BL8 (fixed by MRS and OTF): Ris ing clock ed g e four clock cycl e s after WL
For BC4 (OTF): Rising clock edge four clock cycles after WL
For BC4 (fixed by MRS): Rising clock edge two clock cycles after WL
35. RESET# should be LOW as soon as power starts to ramp to ensure the outputs are in
High-Z. Until RESET# is LOW, the outputs are at risk of driving and could result in
excessive current, depending on bus activity.
36. The refresh period is 64ms when TC is less than or equal to 85oC. This equates to an
average re fresh rate of 7.8125µs. However, nine REFRESH commands should be
asserted at least once every 70.3µs. When TC is gr eater than 85oC, the r efr esh peri od is
32ms.
37. Although CKE is allowed to be registered LOW after a REFRESH command when
tREFPDEN (MIN) is satisfie d , th ere are cases where additional time such as
tXPDLL (MIN) is required.
38. ODT turn-on time MIN is when the device leaves High-Z and ODT resistance begins
to turn on. ODT turn-on time maximum is when the ODT r esistance is fully on. The
ODT reference load is shown in Figure 23 on page 52.
39. Half-clock output parameters must be de rated by the actual tERR10PER and tJITDTY
when input clock jitter is present. This results in each parameter becoming larger . The
parameters tADC (MIN) and tAOF(MIN) are each required to be derated by subtract-
ing both tERR10PER (MAX) and tJITDTY (MAX). The parameters tADC(MAX) and
tAOF (MAX) are require d to be de rated by subtracting both tERR10PER (MAX) and
tJITDTY (MAX).
40. ODT turn-off time minimum is when the device starts to turn off ODT resistance.
ODT turn-off time maximum is when the DRAM buffer is in High-Z. The ODT refer -
ence load is shown in Figure 24 on page 54. This output load is used for ODT timings
(see Figure 31 on page 63).
41. Pulse width of a input signal is defined as the width between the first crossing of
VREF(DC) and the consecutive crossing of VREF(DC).
42. Should the clock rate be larger than tRFC (MIN), an AUTO REFRESH command
should have at least one NOP command between it and another AUTO REFRESH
command. Additionally, if the clock rate is slow er than 40ns (25 MHz) all REFRESH
commands should be followed by a PRECHARGE All command.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 79 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Command and Address Setup, Hold, and Derating
The total tIS (setup time) and tIH (hold time) required is calcul ated by adding the data
sheet tIS (base) and tIH (base) values (see Table 55; values come from Table 54 on
page 70) to the ΔtIS and ΔtIH derating values (see Table 56 on page 80 and Table 57 on
page 80), respectively. Example: tIS (total setup time) = tIS (base) + ΔtIS. For a valid tran-
sition, the input signal has to remain above/below VIH(AC)/VIL(AC) for some time tVAC
(see Table 57 on page 80).
Although the total setup time for slow slew rates might be negative (for example, a va lid
input signal will not have reached VIH[AC]/VIL[AC] at the time of the rising clock transi-
tion), a valid input signal is still requi r ed to complete the tr ansition and to r each VIH(AC)/
VIL(AC) (see Figur e15 on page 44 for input signal requi re ments). F or sl ew rates whic h fall
between the values listed in Table 57 on page 80 and Table 58 on page 81, the derating
values may be obtained by li near interpolation.
Set up ( tIS) nominal slew rate for a rising signal is defined as the slew rate between the
last crossing of VREF(DC) and the first crossing of VIH(AC) MIN. Setup (tIS) nominal slew
rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC)
and the first crossing of VIL(AC) MAX. If the actual signal is always earlier than the
nominal slew rate line between the shaded “VREF(DC)-to-AC region,” use the nominal
slew rate for derating valu e (see Figur e 34 on page 82). If the actual signal is later than the
nominal slew rate line anywhere between the shaded “VREF(DC)-to-AC region,” the slew
rate of a tangent line to the actual signal from the AC level to the DC level is used for
derating value (see Figure 36 on page 84).
Hold (tIH) nominal slew rate for a rising signal is defined as the slew rate between the
last crossing of VIL(DC) MAX and the first crossing of VREF(DC). Hold (tIH) nominal slew
rate for a falling signal is defined as the slew rate between the last crossing of
VIH(DC) MIN and the first crossing of VREF(DC). If the actual signal is always later than the
nominal slew rate line between the shaded “DC-to-VREF(DC) region,” use the nominal
slew rate for derating value (s ee Figure 35 on page 83). If the actual signal is earlier than
the nominal slew rate line anywhere between the shaded “DC-to-VREF(DC) region,” the
slew rate of a tangent line to the actual signal from the DC leve l to the VREF(DC) level is
used for derating v a lue (see Figure 37 on page 85).
Table 55: Command and Address Setup and Hold Values Referenced at 1 V/ns – AC/DC-Based
Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units Reference
tIS (base) AC175 200 125 65 45 ps VIH(AC)/VIL(AC)
tIS (base) AC150 350 275 190 170 ps VIH(AC)/VIL(AC)
tIH (base) DC100 275 200 140 120 ps VIH(DC)/VIL(DC)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 80 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Ta ble 56: Derating Values for tIS/tIH – AC175/DC100-Based
ΔtIS, ΔtIH Derating (ps) – AC/DC-Based
AC175 Threshold: VIH(AC) = VREF(DC) + 175mV, VIL(AC) = VREF(DC) - 175mV
CMD/
ADDR
Slew Rate
V/ns
CK, CK# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIH ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH
2.0 88 50 88 50 88 50 96 58 104 66 112 74 120 84 128 100
1.5 59345934593467427550835891689984
1.0 000000881616242432344050
0.9 2–4–2–4–2–4 6 4 1412222030303846
0.8 –6 –10 –6 –10 –6 –10 2 –2 10 6 18 14 26 24 34 40
0.7 –11 –16 –11 –16 –11 –16 3 –8 5 0 13 8 21 18 29 34
0.6 –17 –26 –17 –26 –17 –26 –9 –18 –1 –10 7 –2 15 8 23 24
0.5 –35 –40 –35 –40 –35 –40 –27 –32 –19 –24 –11 –16 –2 6 5 10
0.4 –62 –60 –62 –60 –62 –60 –54 –52 –46 –44 –38 –36 –30 –26 –22 –10
Ta ble 57: Derating Values for tIS/tIH – AC150/DC100-Based
ΔtIS, ΔtIH Derating (ps) – AC/DC-Based
AC150 Threshold: VIH(AC) = VREF(DC) + 150mV, VIL(AC) = VREF(DC) - 150mV
CMD/
ADDR
Slew Rate
V/ns
CK, CK# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH ΔtIH ΔtIH ΔtIS ΔtIH ΔtIS ΔtIH
2.0 75507550755083589166997410784115100
1.5 50345034503458426650745882689084
1.0 000000881616242432344050
0.9 0 –4 0 –4 0 –4 8 4 16 12 24 20 32 30 40 46
0.8 0100100108 216 6 241432244040
0.7 0 –16 0 –16 0 –16 8 –8 16 0 24 8 32 18 40 34
0.6 –1 –26 –1 –26 –1 –26 7 18 15 –10 23 –2 31 8 39 24
0.5 –10 –40 –10 –40 –10 –40 –2 –32 6 –24 14 –16 22 –6 30 10
0.4 –25 –60 –25 –60 –25 –60 –17 –52 –9 –44 –1 –36 7 –26 15 –10
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 81 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Ta ble 58: Minimum Required Time tVAC Above VIH(AC) for Valid Transition
Below VIL(AC)
Slew Rate (V/ns) tVAC at 175mV (ps) tVAC at 150mV (ps)
>2.0 75 175
2.0 57 170
1.5 50 167
1.0 38 163
0.9 34 162
0.8 29 161
0.7 22 159
0.6 13 155
0.5 0 150
<0.5 0 150
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 82 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 34: Nominal Slew Rate and tVAC for tIS (Command and Address – Clock)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Setup slew rate
rising signal
Setup slew rate
falling signal
ΔTF ΔTR
==
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(DC) MAX
Nominal
slew rate
VREF to AC
region
tVAC
tVAC
DQS
DQS#
CK#
CK
tIStIH tIStIH
Nominal
slew rate
VREF to AC
region
VREF(DC) - VIL(AC) MAX
ΔTF
VIH(AC) MIN - VREF(DC)
ΔTR
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 83 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 35: Nominal Slew Rate for tIH (Command and Address – Clock)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Hold slew rate
falling signal
Hold slew rate
rising signal
ΔTR ΔTF
==
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Nominal
slew rate
DC to VREF
region
DQS
DQS#
CK#
CK
tIStIH tIStIH
DC to VREF
region
Nominal
slew rate
VREF(DC) - VIL(DC) MAX
ΔTR
VIH(DC) MIN - VREF(DC)
ΔTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 84 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 36: Tangent Line for tIS (Command and Address – Clock)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Setup slew rate
rising signal
Setup slew rate
falling signal
ΔTF
ΔTR
=
=
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Tangent
line
VREF to AC
region
Nominal
line
tVAC
tVAC
DQS
DQS#
CK#
CK
tIStIH tIStIH
VREF to AC
region
Tangent
line
Nominal
line
Tangent line (VIH[DC] MIN - VREF[DC])
ΔTR
Tangent line (VREF[DC] - VIL[AC] MAX)
ΔTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 85 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 37: Tangent Line for tIH (Command and Address – Clock)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Hold sle w ra te
falling signal
ΔTR
=
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Tangent
line
DC to VREF
region
Hold sle w ra te
rising signal =
DQS
DQS#
CK#
CK
tIStIH tIStIH
DC to VREF
region
Tangent
line
Nominal
line
Nominal
line
ΔTR
Tangent line (VREF[DC] - VIL[DC] MAX)
ΔTR
Tangen t line ( V IH[DC] MIN - VREF[DC])
ΔTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 86 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Data Setup, Hold, and Derating
The total tDS (setup time) and tDH (hold time) required is calculated by adding the data
sheet tDS (base) and tDH (base) values (see Table 59; values come from Table 54 on
page 70) to the ΔtDS and ΔtDH derating values (see Table 60 on page 87), respectively.
Example: tDS (total setup time) = tDS (base) + ΔtDS. For a valid transition, the input
signal has to remain above/below VIH(AC)/VIL(AC) for some time tVAC (see Table 62 on
page 88).
Although the total setup time for slow slew rates might be negative (for example, a va lid
input signal will not have reached VIH[AC]/VIL[AC]) at the time of the rising clock transi-
tion), a valid input signal is still required to complete the transition and to reach VIH/
VIL(AC). For slew rates which fall between the values listed in Table 61 on page 87, the
derati ng values may obtained by linear interpolation.
Set up ( tDS) nominal slew rate for a rising signal is defined as the slew r a te between the
last crossing of VREF(DC) and the first crossing of VIH(AC) MIN. Setup (tDS) nominal slew
rate for a falling signal is defined as the slew rate between the last crossing of VREF(DC)
and the first crossing of VIL(AC) MAX. If the actual signal is always earlier than the
nominal slew rate line between the shaded “VREF(DC)-to-AC region,” use the nominal
slew rate for derating valu e (see Figur e 38 on page 89). If the actual signal is later than the
nominal slew rate line anywhere between the shaded “VREF(DC)-to-AC region,” the slew
rate of a tangent line to the actual signal from the AC level to the DC level is used for
derating value (see Figure 40 on page 91).
Hold (tDH) nomi nal sl e w rate for a risin g si gnal is defined as the slew rate between the
last crossing of VIL(DC) MAX and the first crossing of VREF(DC). Hold (tDH) nominal slew
rate for a falling signal is defined as the slew rate between the last crossing of
VIH(DC) MIN and the first crossing of VREF(DC). If the actual signal is always later than the
nominal slew rate line between the shaded “DC-to-VREF(DC) region,” use the nominal
slew rate for derating value (s ee Figure 39 on page 90). If the actual signal is earlier than
the nominal slew rate line anywhere between the shaded “DC-to-VREF(DC) region,” the
slew rate of a tangent line to the actual signal from the “DC-to-VREF(DC) region” is used
for derating value (see Figure41 on page 92).
Table 59:
Data Setup and Hold Values at 1 V/ns (DQS, DQS# at 2 V/ns
)
– AC/DC-Based
Symbol DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 Units Reference
tDS (base) AC175 75 25 ps VIH(AC)/VIL(AC)
tDS (base) AC150 125 75 30 10 ps VIH(AC)/VIL(AC)
tDH (base) DC100 150 100 65 45 ps VIH(DC)/VIL(DC)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 87 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Ta ble 60: Derating Values for tDS/tDH – AC175/DC100-Based
Shaded cells indicate slew rate combinations not supported
ΔtDS, ΔtDH Derating (ps) – AC/DC-Based
DQ Slew
Rate V/ns
DQS, DQS# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH
2.0 885088508850
1.5 5934593459346742
1.0 000000881616
0.9 –2 –4 –2 –4 6 4 14 12 22 20
0.8 –6 –10 2 –2 10 6 18 14 26 24
0.7 38 5 0 13 8 21182934
0.6 –1 –10 7 –2 15 8 23 24
0.5 –11 –16 –2 –6 5 10
0.4 –30 –26 –22 –10
Ta ble 61: Derating Values for tDS/tDH – AC150/DC100-Based
Shaded cells indicate slew rate combinations not supported
ΔtDS, ΔtDH Derating (ps) – AC/DC-Based
DQ Slew
Rate V/ns
DQS, DQS# Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns
ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH ΔtDS ΔtDH
2.0 755075507550
1.5 5034503450345842
1.0 000000881616
0.9 0 –4 0 –4 8 4 16 12 24 20
0.8 0108216624143224
0.7 8 –8 16 0 24 8 32 18 40 34
0.6 15 –10 23 –2 31 8 39 24
0.5 141622–63010
0.4 7 –26 15 –10
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 88 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Table 62: Required Time tVAC Above VIH(AC) (Below VIL[AC]) for Valid Transition
Slew Rate (V/ns)
tVAC at 175mV (ps) tVAC at 150mV (ps)
Min Min
>2.0 75 175
2.0 57 170
1.5 50 167
1.0 38 163
0.9 34 162
0.8 29 161
0.7 22 159
0.6 13 155
0.5 0 150
<0.5 0 150
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 89 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 38: Nominal Slew Rate and tVAC for tDS (DQ – Strobe)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Setup slew rate
rising signal
Setup slew rate
falling signal
ΔTF ΔTR
==
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Nominal
slew rate
VREF to AC
region
tVAC
tVAC
tDH
tDS
DQS
DQS#
tDH
tDS
CK#
CK
VREF to AC
region
Nominal
slew rate
VIH(AC) MIN - VREF(DC)
ΔTR
VREF(DC) - VIL(AC) MAX
ΔTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 90 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 39: Nominal Slew Rate for tDH (DQ – Strobe)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Hold slew rate
falling signal
Hold slew rate
rising signal
ΔTR ΔTF
==
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Nominal
slew rate
DC to VREF
region
tDH
tDS
DQS
DQS#
tDH
tDS
CK#
CK
DC to VREF
region
Nominal
slew rate
VREF(DC) - VIL(DC) MAX
ΔTR
VIH(DC) MIN - VREF(DC)
ΔTF
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 91 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 40: Tangent Line for tDS (DQ – Strobe)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Setup slew rate
rising signal
Setup slew rate
falling signal
ΔTF
ΔTR
=
=
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Tangent
line
VREF to AC
region
Nominal
line
tVAC
tVAC
tDH
tDS
DQS
DQS#
tDH
tDS
CK#
CK
VREF to AC
region
Tangent
line
Nominal
line
ΔTR
Tangent line (VREF[DC] - VIL[AC] MAX)
ΔTF
Tangent line (VIH[AC] MIN - VREF[DC])
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D3.fm - Rev G 2/09 EN 92 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Speed Bin Tables
Figure 41: Tangent Line for tDH (DQ – Strobe)
Notes: 1. Both the clock and the strobe are drawn on different time scales.
VSS
Hold slew rate
falling signal
ΔTFΔTR
=
VDDQ
VIH(AC) MIN
VIH(DC) MIN
VREF(DC)
VIL(DC) MAX
VIL(AC) MAX
Tangent
line
DC to VREF
region
Hold slew rate
rising signal =
DQS
DQS#
CK#
CK
DC to VREF
region
Tangent
line
Nominal
line
Nominal
line
Tangent line (VIH[DC] MIN - VREF[DC])
ΔTF
Tangent line (VREF[DC] - VIL[DC] MAX)
ΔTR
tDStDH tDStDH
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 93 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Commands
Truth Tables
Notes: 1. Commands are defined by states of CS#, RAS#, CAS#, WE#, and CKE at the rising edge of the
clock. The MSB of BA, RA, and CA are device-density and confi guration-dependent.
2. RESET# is LOW enabled and used only for asynchronous reset. Thus, RESET# must be held
HIGH during any normal operation.
3. The state of ODT does not affect the states described in this table.
Ta ble 63: Truth Table – Command
Notes 1–5 apply to the entire table
Function Symbol
CKE
CS# RAS# CAS# WE# BA
[2:0] AnA12 A10 A[11,
9:0] Notes
Prev
Cycle Next
Cycle
MODE REGISTER SET MRS H H L L L L BA OP code
REFRESH REF H H L L L H V V V V V
Self refresh entry SRE H L L L L H V V V V V 6
Self refresh exit SRX L H H V V V V V V V V 6, 7
LH HH
Single-bank PRECHARGE PRE H H L L H L BA V V L V
PRECHARGE all banks PREA H H L L H L V V V H V
Bank ACTIVATE ACT H H L L H H BA Row addr ess (RA)
WRITE BL8MRS,
BC4MRS WR H H L H L L BA RFU V L CA 8
BC4OTF WRS4 H H L H L L BA RFU L L CA 8
BL8OTF WRS8 H H L H L L BA RFU H L CA 8
WRITE with
auto
precharge
BL8MRS,
BC4MRS WRAP H H L H L L BA RFU V H CA 8
BC4OTF WRAPS4 H H L H L L BA RFU L H CA 8
BL8OTF WRAPS8 H H L H L L BA RFU H H CA 8
READ BL8MRS,
BC4MRS RD H H L H L H BA RFU V L CA 8
BC4OTF RDS4 H H L H L H BA RFU L L CA 8
BL8OTF RDS8 H H L H L H BA RFU H L CA 8
READ with
auto
precharge
BL8MRS,
BC4MRS RDAP H H L H L H BA RFU V H CA 8
BC4OTF RDAPS4 H H L H L H BA RFU L H CA 8
BL8OTF RDAPS8 H H L H L H BA RFU H H CA 8
NO OPERATION NOP H H L H H H V V V V V 9
Device DESELECTED DES H H H X X X X X X X X 10
Power-dow n en try PDE H L L H H H V V V V V 6
HV VV
Power-down exit PDX L H L H H H V V V V V 6, 11
HV VV
ZQ CALIBRATION LONG ZQCL H H L H H L X X X H X 12
ZQ CALIBRATION SHORT ZQCS H H L H H L X X X L X
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 94 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
4. Operations apply to the bank defined by the bank address. For MRS, BA selects one of four
mode registers.
5. “V” means “H” or “L” (a defined logic level), and “X” means “Don’t Care.”
6. See Table 64 for additional information on CKE transition.
7. Self refresh exit is asynchronous.
8. Burst READs or WRITEs cannot be terminated or interrupted. MRS (fixed) and OTF BL/BC are
defined in MR0.
9. The purpose of the NOP command is to prevent the DRAM from registering any unwanted
commands. A NOP will not terminate an operation that is executing.
10. The DES and NOP commands perform similarly.
11. The power-down mode does not perform any REFRESH operations.
12. ZQ CALIBRATION LONG is used for either ZQINIT (first ZQCL command during initialization)
or ZQOPER (ZQCL command after initialization).
Notes: 1. All states and sequences not shown are illegal or reserved unless explicitly described else-
where in this document.
2. tCKE (MIN) means CKE must be registered at multiple consecutive positive clock edges. CKE
must remain at the valid input level the entire time it takes to achieve the required number
of registration clocks. Thus, after any CKE transition, CKE may not transition from its valid
level during the time period of tIS + tCKE (MIN) + tIH.
3. Current state = The state of the DRAM immediately prior to clock edge n.
4. CKE (n) is the logic state of CKE at clock edge n; CKE (n- 1) was the state of CKE at the pre-
vious clock edge.
5. COMMAND is the command registered at the clock edge (must be a legal command as
defined in Table 63 on page 93). Action is a result of COMMAND. ODT does not affect the
states described in this table and is not listed.
6. Idle state = All banks are closed, no data bursts are in progress, CKE is HIGH, and all timings
from previous operations are satisfied. All self refresh exit and power-down exit parameters
are also sa tisfied.
DESELECT (DES)
The DES command (CS# HIGH) prevents new commands from being executed by the
DRAM. Operations already in progress are not affected.
Ta ble 64: Truth Table – CKE
Notes 1–2 apply to the entire table; see Table 63 on page 93 for additional command details
Current State3
CKE
Command5
(RAS#, CAS#, WE#, CS#) Action5Notes
Previous Cycle4
(n-1) Present Cycle4
(n)
Power-down L L “Don’t Care” Maintain power-down
L H DES or NOP Power-down exit
Self refresh L L Don’t Care” Maintain self refresh
L H DES or NOP Self refresh exit
Bank(s) active H L DES or NOP Active power-down entry
Reading H L DES or NOP Power-down entry
Writing H L DES or NOP Power-down entry
Precharging H L DES or NOP Power-down entry
Refreshing H L DES or NOP Precharge power-down entry
All banks idle H L DES or NOP Precharge po wer-down entry 6
H L REFRESH Self refresh
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 95 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
NO OPERATION (NOP)
The NOP command (CS# LOW) prevents unwanted commands from being registered
during idle or wait states. Operations already in progress are not affected.
ZQ CALIBRATION
ZQ CALIBRATION LONG (ZQCL)
The ZQCL command is used to perform the initial calibration during a power-up initial-
ization and reset sequence (see Figure50 on page 109). This command may be issued at
any time by the controller depending on the system environment. The ZQCL command
triggers the calibration engi ne inside the DRAM. After calibration is achieved, the cali-
brated values are transferred from the calibration engine to the DRAM I/O, which are
reflected as updated RON and ODT values.
The DRAM is allowed a timing window defined by either tZQINIT or tZQOPER to perform
the full calibr ation and transfer of values. When ZQCL is issued during the initialization
sequence, the timing parameter tZQINIT must be satisfied. When initialization is
complete, subsequen t ZQCL comma nd s require the timing parameter tZQOPER to be
satisfied.
ZQ CALIBRATION SHO RT (ZQCS)
The ZQCS command is used to perform periodic calibrations to account for small
voltage and temperature variations. The shorter timing window is provided to perfor m
the reduced calibration and tr ansfer of v a lues as defined by timing para meter tZQ CS. A
ZQCS command can effectively correct a minimum of 0.5% RON and RTT impedance
error within 64 clock cycles, assuming the maximum sensitivities specified in Table 41
on page 59 and Table 42 on page 60.
ACTIVATE
The ACTIVATE command is used to open (or activate) a row in a particular bank for a
subsequent access. The value on the BA[2:0] inputs selects the bank, and the address
provided on inputs A[n:0] selects the row. This row remains open (or active) for accesses
until a PRECHARGE command is issued to that bank.
A PRECHARGE command must be issued before opening a different row in the same
bank.
READ
The READ command is used to initiate a burst read access to an active row. The address
provided on inputs A[2:0] selects the starting column address depending on the burst
length and burst type selected (see Table 69 on page 113 for additional information). The
value on input A10 determines whether or not auto precharge is used. If auto precharge
is selected, the row being accessed will be precharged at the end of the READ burst. If
auto precharg e is not se lected, the row will remain open for subsequent accesses. The
value on input A12 (if enabled in the mode register) when the READ command is issued
determines whether BC4 (chop) or BL8 is used. After a READ command is issued, the
READ burst may not be interrupted. A summary of READ comm ands is shown in
Table 65 on page 96.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 96 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
WRITE
The WRITE command is used to initiate a burst write access to an active row. The value
on the BA[2:0] inputs selects the bank. The value on input A10 determines whether or
not auto precharge is used. The value on input A12 (if enabled in the MR) when the
WRITE command is issu ed de termines whether BC4 (chop) or BL8 is used. The WRITE
command summary is shown in Table 66.
Input data appearing on the DQ is written to the memory array subject to the DM input
logic level appearing coincident with the data. If a given DM signal i s re gister ed L O W, the
corresponding data will be written to memory. If the DM signal is registered HIGH, the
corresponding data input s w il l be ignored and a WRITE will not be executed to that
byte/column location.
PRECHARGE
The PRECHAR GE command is used to deactiv ate the open row in a particular bank or in
all banks. The bank(s) are available for a subsequent row access a specified time (tRP)
after the PRECHARGE command is issued, except in the case of concurrent auto
prechar ge . A READ or WRITE command to a differ ent bank is allo wed during concurr ent
auto precharge as long as it does not interrupt the data transfer in the current bank and
does not violate any other timing parameters. Input A10 determines whether one or all
banks are precharged. In the case where only one bank is precharged, inputs BA[2:0]
select the bank; otherwise, BA[2:0] are treated as “Dont Care.” After a bank is
precharged, it is in the idle state and must be activated prior to any READ or WRITE
commands being issued to that bank. A PRECHARGE command is treated as a NOP if
Table 65: READ Command Summary
Function Symbol
CKE
CS# RAS# CAS# WE# BA
[3:0] AnA12 A10 A[11,
9:0]
Previous
Cycle Next
Cycle
READ BL8MRS, BC4MRS RD H L H L H BA RFU V L CA
BC4OTF RDS4 H L H L H BA RFU L L CA
BL8OTF RDS8 H L H L H BA RFU H L CA
READ
with auto
precharge
BL8MRS, BC4MRS RDAP H L H L H BA RFU V H CA
BC4OTF RDAPS4 H L H L H BA RFU L H CA
BL8OTF RDAPS8 H L H L H BA RFU H H CA
Table 66: WRITE Command Summary
Function Symbol
CKE
CS# RAS# CAS# WE# BA
[3:0] AnA12 A10 A[11,
9:0]
Prev
Cycle Next
Cycle
WRITE BL8MRS, BC4MRS WR H L H L L BA RFU V L CA
BC4OTF WRS4 H L H L L BA RFU L L CA
BL8OTF WRS8 H L H L L BA RFU H L CA
WRITE with
auto
precharge
BL8MRS, BC4MRS WRAP H L H L L BA RFU V H CA
BC4OTF WRAPS4 H L H L L BA RFU L H CA
BL8OTF WRAPS8 H L H L L BA RFU H H CA
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 97 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
there is no open row in that bank (idle state) or if the previously open row is alre ady in
the process of precharging. However, the precharg e pe riod is determined by the last
PRECHARGE command issued to the bank.
REFRESH
REFRESH is used during normal operation of the DRAM and is analogous to CAS#-
before-RAS# (CBR) refresh or auto refresh. This command is nonpersistent, so it must be
issued each time a r efr esh is r equir ed. The addr essing is gene rated b y the internal r efr esh
controller. This makes the addr ess bi ts a “ Dont Car e” during a REFRESH command. The
DRAM requires REFRESH cycles at an average interval of 7.8µs (maximum when TC
85°C or 3.9µs MAX when TC 95°C). The REFRESH period begins when the REFRESH
command is registered and ends tRFC (MIN) later.
To allow for improved efficiency in scheduling and switching between tasks, some flexi-
bility in the absolute r efresh interval is provided. A maximum of eight REFRESH
commands can be posted to any given DRAM, meaning that the maximum absolute
interval between any REFRESH command and the next REFRESH command is nine
times the ma xi m u m ave rage int erval refresh rate. Self refresh may be entered with up to
eight REFRESH commands being posted. After exiting self refresh (when entered with
posted REFRESH commands) additional posting of REFRESH commands is allowed to
the extent the maximum number of cumulative posted REFRESH commands (both pre
and post self r efresh) does not exceed eight REFRESH commands.
The posting limit of eight REFRESH commands is a JEDEC specification; however, as
long as all the required number of REFRESH commands are issued within the refresh
period (64ms), exceeding the eight posted REFRESH commands is allowed.
Figure 42: Refresh Mode
Notes: 1. NOP commands are shown for ease of illustration; other valid commands may be possible at
these times. CKE must be active during the PRECHARGE, ACTIVATE, and REFRESH com-
mands, but may be inactive at other times (see “Power-Down Mode” on page 153).
NOP1
NOP1NOP1
PRE
RA
Bank(s)3BA
REF NOP1REF2NOP1ACTNOP1
One bank
All banks
tCK tCH tCL
RA
tRFC
2
tRP tRFC (MIN)
T0 T1 T2 T3 T4 Ta0 Tb0
Ta1 Tb1 Tb2
Don’t Care
Indicates A Break in
Time Scale
Valid1Valid1Valid1
CK
CK#
Command
CKE
Address
A10
BA[2:0]
DQ4
DM4
DQS, DQS#4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 98 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
2. The second REFRESH is not required but depicts two back-to-back REFRESH commands.
3. “Don’t Care” if A10 is HIGH at this point; however, A10 must be HIGH if more than one
bank is active (must precharge all active banks).
4. For operations shown, DM, DQ, and DQS signals are all “Don’t Care”/High-Z.
SELF REFRESH
The SELF REFRESH command is used to retain data in the DRAM, even if the rest of the
system is powered down. When in the self refresh mode, the DRAM retains data without
external cl oc king . The se lf refresh mode is also a convenient me thod use d to enable/
disable the DLL (see “DLL Disable Mode” on page 98) as well as to change the clock
frequ ency within the allowed synchronous operating r ange (see I nput Cloc k F requency
Change” on page 101). All power supply inputs (including VREFCA and VREFDQ) must be
maintained at valid levels upon entry/exit and during self refresh mode oper ation. All
power supply inputs (including VREFCA and VREFDQ) must be maintained at valid levels
upon entr y/ exit and during self refresh mode operation. VREFDQ may float or not drive
VDDQ/2 while in the self refresh mode under certain conditions:
•V
SS < VREFDQ < VDD is maintained
•V
REFDQ is valid and stable prior to CKE going back HIGH
The first WRITE operation may not occur earlier than 512 clocks after VREFDQ is valid
All other self refresh mode exit timing requirements are met.
DLL Disable Mode
If the DLL is d isable d by the mode re gi ster (MR1[0] c an be swi tched d uring initi alizati on
or later), the DRAM is targeted, but not guaranteed, to operat e sim ila rly to the norm al
mode with a few notable exceptions:
The DRAM supports only one value of CAS latency (CL = 6) and one value of CAS
WRITE latency (CWL = 6).
DLL disable mode affects the read data clock-to-data strobe relationship (tDQSCK),
but not the read data-to-data stro be relationship (tDQSQ, tQH). Sp ecial attention is
needed to line the read data up with the controller time domain when the DLL is
disabled.
In normal operation (DLL on), tDQSCK starts from the rising clock edge AL+ CL
cycles after the READ co mm and . In DLL disabl e m o de, tDQSCK starts AL + CL - 1
cycles after the READ command. Additionally, with the DLL disabled, the value of
tDQSCK could be larger than tCK.
The ODT feature is not supporte d during DLL disable mode (includ in g dynamic ODT).
The ODT resistors must be disabled by continuously registering the ODT ball LOW by
programming RTT_NOM MR1[9, 6, 2] and RTT_WR MR2[10, 9] to “0” while in the DLL
disable m o de.
Specific steps must be followed to switch between the DLL enable and DLL disable
modes due to a gap in the allowed clock rates between the two modes (tCK[AVG] MAX
and tCK[DLL disable]MIN, respecti vely). The only time the clock is allo wed to cross this
clock rate gap is during self refresh mode. Thus, the required procedure for switching
from the DLL enable mode to the DLL disa bl e mode is to change frequency during self
refresh (see Figure 43 on page 99):
1. Star ting from the idle state (all banks are precharged, all timings are fulfilled, ODT is
turned off, and RTT_NOM and RTT_WR are High-Z), set MR1[0] to “1” to disable the
DLL.
2. Enter self refre sh mode after tMOD has been satisfied.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 99 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
3. After tCKSRE is satisfie d, change the frequency to the desired clock rate .
4. Self refr esh may be exited when the clock is stable with the new frequency for tCKSRX.
After tXS is satisfied, update the mode registers with appropriate values.
5. The DRAM will b e ready for its next co m mand in the DLL disa bl e mode after the
greater of tMRD or tMOD has been satisfied. A Z QCL command should be is sued with
appropriate timings met as well.
Figure 43: DLL Enable Mode to DLL Disable Mode
Notes: 1. Any valid command.
2. Disable DLL by setting MR1[0] to “1.”
3. Enter SELF REFRESH.
4. Exit SELF REFRESH.
5. Update the mode registers with the DLL disable parameters setting.
6. Starting with the idle state, RTT is in the High-Z state.
7. Change frequency.
8. Clock must be stable tCKSRX.
9. Static LOW in case RTT_NOM or RTT_WR is enabled; otherwise, static LOW or HIGH.
A similar proc edure i s requir ed for switching fr om the DLL disable mode back to the DLL
enable mode . This also require s changing the frequency during self refresh mode (see
Figure 44 on page100).
1. Star ting from the idle state (all banks are precharged, all timings are fulfilled, ODT is
turned off, and RTT_NOM and RTT_WR are High-Z), enter self refresh mode.
2. After tCKSRE is satisfied, change the frequency to the new clock rate.
3. Self refr esh may be exited when the clock is stable with the new frequency for tCKSRX.
After tXS is satisfied, update the mode registers with the appropriate values. At a min-
imum, set MR1[0] to “0” to enable the DLL. Wait tMRD, then set MR0[8] to “1” to
enable DLL RESET.
4. After another tMRD delay is satisfied, th en upd ate the remaining mode registers with
the appropriate values.
5. The DRAM will be ready for its next command in the DLL enable mode after the
greater of tMRD or tMOD has been satis fie d. Ho wev er, befor e applying any comm and
or function requiring a locked DLL, a delay of tDLLK after DLL RESET must be satis-
fied. A ZQCL command should be issued with the appropriate timings met as well .
Command
T0 T1 Ta0 Ta1 Tb0Tc0
7
6
Td0Td1Te0 Te1 Tf0
CK
CK#
ODT9
Valid1
Dont Care
Valid1
SRE3NOP
MRS2NOP SRX4MRS5
Valid1
NOP NOP
Indicates a Break in
Time Scale
tMOD tCKSRE tMOD
tXS
tCKESR
CKE
tCKSRX8
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 100 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Figure 44: DLL Disable Mode to DLL Enable Mode
Notes: 1. Enter SELF REFRESH.
2. Exit SELF REFRESH.
3. Wait tXS, then set MR1[0] to “0” to enable DLL.
4. Wait tMRD, then set MR0[8] to “1” to begin DLL RESET.
5. Wait tMRD, update registers (CL, CWL, and write recovery may be necessary).
6. Wait tMOD, any valid command.
7. Starting with the idle state.
8. Change frequency.
9. Clock must be stable at least tCKSRX.
10. Static LOW in case RTT_NOM or RTT_WR is enabled; otherwise, static LOW or HIGH.
The clock frequency range for the DLL disable mode is specified by the parameter
tCKDLL_DIS. Due to latency counter and timing restrictions, only CL = 6 and CWL = 6 ar e
supported.
DLL disable mode will affect the read data clock to data strobe relationship (tDQSCK)
but not the data strobe to data relationship (tDQSQ, tQH). Special attention is needed to
line up read data to the controller time domain.
Compared to the DLL on mode where tDQSCK starts from the rising clock edge AL + CL
cycles afte r the READ command, the DLL disable m ode tDQSCK s tarts AL+ CL - 1 cycles
after the READ command (see Figure 45 on page 101).
WRITE operations function similarly between the DLL enable and DLL disable modes;
however, ODT functionality is not allowed with DLL disable mode .
Indicates a Break in
Time Scale
tCKESR
tDLLK
CKE
T0 Ta0 Ta1 Tb0Tc0Tc1Td0 Te0 Tf0 Tg0
CK
CK#
ODT10
SRE1NOP
CommandNOP SRX2MRS3MRS4MRS5Valid6
Valid
Dont Care
78
tCKSRE
Th0
tCKSRX9
ODTL off + 1 × tCK
tXStMRD tMRD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 101 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Figure 45: DLL Disable tDQSCK Timing
Input Clock Frequency Change
When the DDR3 SDRAM is initialized, it requires the clock to be stable during most
normal states of operation. This means that after the clock frequency has been set to the
stable state, the clock period is not allowed to deviate except what is allowed for by the
clock jitter and spread spectrum clocking (SSC) specifications.
The input clock frequency can be changed from one stable clock rate to another under
two conditions: self refresh mode and precharge power-down mode. Outside of these
two modes, it is illegal to change the clock frequency. For the self refresh mode condi-
tion, when the DDR3 SDRAM has been successfully placed into self refresh mode and
tCKSRE has been satisfied, the state of the clock becomes a “ Dont Car e .” When the clock
becomes a “Dont Care,” changing the clock frequency is permissible, provided the new
clock frequency is stable prior to tCKSRX. When entering and exiting self refresh mode
for the sole purpose of changing the clock fre quency, the self refresh entry and exit spec-
ifications mu st still be met.
The precharge power-down mode condition is when the DDR3 SDRAM is in precharge
power-down mode (either fast exit mode or slow exit mode). Either ODT must be at a
logic LOW or RTT_NOM and RTT_WR must be disabled via MR1 and MR2. This ensures
RTT_NOM and RTT_WR are in an off state prior to entering precharge power-down mode,
and CKE must be at a l ogi c L OW. A minimum of tCKSRE must occur after CKE goes LOW
before the clock frequency can change. The DDR3 SDRAM input clock frequency is
allowed to change only within the minimum and maximum operating frequency
specified for th e particular spee d g rade ( tCK [AVG] MIN to tCK [AVG] MAX). During the
input clock frequency change, CKE must be held at a stable LOW level. When the input
clock frequency i s changed, a stable clock must be provided to the DRAM tCKSRX before
prechar ge po wer -do wn may be e xited. After pr echarge po wer -do wn i s exited and tXP has
Table 67: READ Electrical Characteristics, DLL Disable Mode
Parameter Symbol Min Max Units
Access window of DQS from CK, CK# tDQSCK (DLL_DIS)110ns
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10
Dont CareTransitioning Data
Valid
NOPREAD NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
Address
DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
DQ BL8 DLL on
DQS, DQS# DLL on
DQ BL8 DLL disable
DQS, DQS# DLL off
DQ BL8 DLL disable
DQS, DQS# DLL off
RL = AL + CL = 6 (CL = 6, AL = 0)
CL = 6
DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
tDQSCK (DLL_DIS) MIN
tDQSCK (DLL_DIS) MAX
RL (DLL disable) = AL + (CL - 1) = 5
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 102 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
been satisfied, the DLL must be reset via the MRS. Depending on the new clock
frequ ency, additional MRS commands may need to be issued. D uring the DLL lock time ,
RTT_NOM and RTT_WR must remain in an off state. After the DLL lock time, the DRAM is
ready to operate with a new clock fr equency. This process is depicted in Figure46.
Figure 46: Change Frequency During Precharge Power-Down
Notes: 1. Applicable for both slow-exit and fast-exit precharge power-down modes.
2. tAOFPD and tAOF must be satisfied and outputs High-Z prior to T1 (see “On-Die Termina-
tion (ODT)” on page 161 for exact requirements).
3. If the RTT_NOM feature was enabled in the mode register prior to entering precharge
power-down mode, the ODT signal must be continuously registered LOW ensuring RTT is in
an off state. If the RTT_NOM feature was disabled in the mode register prior to entering pre-
charge power-dow n mode, RTT will remain in the off state. The ODT signal can be regis-
tered either LOW or HIGH in this case.
CK
CK#
Command NOPNOPNOP
Address
CKE
DQ
DM
DQS, DQS#
NOP
tCK
Enter precharge
power-down mode Exit precharge
power-down mode
T0 T1 Ta0 Tc0Tb0T2
Don’t Care
tCKE
tXP
MRS
DLL RESET
Valid
Valid
NOP
tCH
tIH tIS
tCL
Tc1 Td0 Te1Td1
tCKSRE
tCH
b
tCL
b
tCK
b
tCH
b
tCL
b
tCK
b
tCH
b
tCL
b
tCK
b
tCPDED
ODT
NOP
Te0
Previous clock frequency New clock frequency
Frequency
change
Indicates a Break in
Time Scale
tIH tIS
tIH
tIS
tDLLK
tAOFPD/tAOF
tCKSRX
High-Z
High-Z
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 103 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Write Leveling
For better signal integrity, DDR3 SDRAM memory modules adopted fly-by topology for
the commands, addresses, control signals , and cl ocks. Write leveling is a scheme for the
memory controller to adjust or deskew the DQS strobe (DQS, DQS#) to CK relationship
at the DRAM with a simple feedback feature provided by the DRAM. Write leveling is
generally used as part of the initialization process, if required. For normal DRAM opera-
tion, this feature must be disabled. This is the only DRAM operation where the DQS
functions as an input (to capture the incoming clock) and the DQ function as outputs (to
report the state of the clock). Note that nonstandard ODT scheme s are required.
The memory controller using the write leveling procedure must have adjus t able delay
settings on its DQS strobe to align the rising edge of DQS to the clock at the DRAM pins.
This is accomplished when the DRAM asynchronously feeds back the CK status via the
DQ bus and sample s with th e rising edge of DQS. The controller repeatedly delays the
DQS strobe until a CK transition from “0” to “1” is detected. The DQS delay established
through this procedure helps ensure tDQSS, tDSS, and tDSH specifications in systems
that use fly -b y topol ogy b y deskewing the tr ace length mismatch. A conceptual timing of
this procedure is shown in Figure 47.
Figure 47: Write Leveling Concept
CK
CK#
Source
Differential DQS
Differential DQS
Differential DQS
DQ
DQ
CK
CK#
Destination
Destination
Push DQS to capture
0–1 transition
T0 T1 T2 T3 T4 T5 T6 T7
T0 T1 T2 T3 T4 T5 T6 Tn
CK
CK#
T0 T1 T2 T3 T4 T5 T6 Tn
Don’t Care
1 1
0 0
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 104 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
When write le veling is enabled , th e rising edge of DQS samples CK, and the pr i me DQ
outputs the sampled CK’s status. The prime DQ for a x4 or x8 configuration is DQ0 with
all other DQ (DQ[7:1]) driving LO W. The prime DQ for a x16 configuration is DQ0 for the
lo wer byte and DQ8 for the upper b yte . It outputs the status of CK sampled by LDQS and
UDQS. All other DQ (DQ[7:1], DQ[15:9]) continue to drive LOW. Two prime DQ on a x16
enable each byte lane to be leveled independently.
The write leveling mode register interacts with other mode regi sters to correctly
configure the write leveling functionality. Besides using MR1[7] to disable/enable write
leveling, MR1[12] m ust be used to enable/disable the output buffers. The ODT value,
burst length, and so for th need to be selected as wel l. Thi s interaction is shown in
Table 68. It should also be noted that when the outputs ar e enabled duri ng write leveli ng
mode, the DQS buffers are set as inputs, and the DQ are set as outputs. A dditionally,
during write leveling mode, only the DQS strobe terminations are activated and deacti-
vated via the ODT ball. The DQ remain disabled and are not affected by the ODT ball
(see Table 68).
Notes: 1. Expected usage if used during write leveling: Case 1 may be used when DRAM are on a
dual-rank module and on the rank not being levelized or on any rank of a module not
being levelized on a multislotted system. Case 2 may be used when DRAM are on any rank
of a module not being levelized on a multislotted system. Case 3 is generally not used. Case
4 is generally used when DRAM are on the rank that is being leveled.
2. Since the DRAM DQS is not being driven (MR1[12] = 1), DQS ignores the input strobe, and
all RTT_NOM values are allowed. This simulates a normal standby state to DQS.
3. Since the DRAM DQS is being driven (MR1[12] = 0), DQS captures the input strobe, and only
some RTT_NOM values are allowed. This simulates a norma l write state to DQ S.
Table 68: Write Leveling Matrix
Note 1 applies to the entire table
MR1[7] MR1[12] MR1[3, 6, 9]
DRAM
ODT Ball
DRAM
RTT_NOM
DRAM State Case Notes
Write
Leveling Output
Buffers RTT_NOM
Value DQS DQ
Disabled See normal operations Write leveling no t enabled 0
Enabled
(1) Disabled
(1) n/a Low Off Off DQS not receiving: not terminated
Prime DQ High-Z: not terminated
Other DQ High-Z: not terminated
12
20Ω, 30Ω,
40Ω, 60Ω, or
120Ω
High On DQS not receiving: terminated by RTT
Prime DQ High-Z: not terminated
Other DQ High-Z: not terminated
2
Enabled
(0) n/a Low Off DQS receiving: not terminated
Prime DQ driving CK state: not terminated
Other DQ driving LOW: not terminated
33
40Ω, 60Ω, or
120ΩHigh On DQS receiving: terminated by RTT
Prime DQ driving CK state: not terminated
Other DQ driving LOW: not terminated
4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 105 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Write Leveling Procedure
A memory controller initiates the DRAM write leveling mode by setting MR1[7] to a “1,
assuming the other programable features (MR0, MR1, MR2, and MR3) are first set and
the DLL is fully reset and locked. The DQ balls enter the write leveling mode goin g from
a High-Z state to an undefined driving state , so the DQ bus should not b e driven. D uring
write leveling mode, only the NOP or DES commands are allowed. The memory
controller should attempt to level only one rank at a time; thus, the outputs of other
ranks should be disabled by setting MR1[12] to a “1” in the other ranks. The memory
controller may assert ODT after a tMOD delay as the DRAM will be r eady to process the
ODT transition. ODT should be turned on prior to DQS being driven LOW by at least
ODTL on delay (WL - 2 tCK), provided it does not violate the aforementioned tMOD
delay requirement.
The memory controller may drive DQS L O W and DQS# HIGH afte r tWLDQSEN has b een
satisfied. The controller m ay begin to togg le DQS after tWL MRD (one DQS togg le i s DQS
transitioning from a LOW state to a HIGH state with DQS# transitioning from a HIGH
state to a LOW state, then both transition back to their original states). At a minimum,
ODTL on and tAON mus t be satisfied at least one cl ock prior to DQS toggling.
After tWLMRD and a DQS LOW preamble (tWPRE) have been satisfied, the memory
controller may provide either a single DQS toggle or multiple DQS toggles to sample CK
for a given DQS-to-CK skew. Each DQS toggle must not violate tDQSL(MIN) and
tDQSH (MIN) specifications. tDQSL (MAX) and tDQSH (MAX) specifications are not
applicable during write leveling mode. The DQS must be able to distinguish the CK’s
rising edge within tWLS and tWLH . The prime DQ will output the CK’s status
asynchronously from the associated DQS rising edge CK capture within tWLO. The
remaining DQ that always driv e LOW when DQS is toggling must be LOW within tWLOE
after the first tWLO is satisfied (the prime DQ going LOW). As previously noted, DQS is
an input and not an output during this process. Figure 48 on page 106 depict s the basic
timing parameters for the overall write leveling procedure.
The memory controller will likely sample each applicable prime DQ state and determine
whether to increment or decrement its DQS delay setting. After the memory controller
performs enough DQS toggles to detect the CK’s “0-to-1” transition, the memory
controller should lock the DQS delay setting for that DRAM. After locking the DQS
setting, level ing for the rank will have been achiev ed, and the write le veling mode for the
rank should be di sabled or reprogrammed (if write leveling of anothe r rank follows).
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 106 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Figure 48: Write Leveling Sequence
Notes: 1. MRS: Load MR1 to enter write leveling mode.
2. NOP: NOP or DES.
3. DQS, DQS# needs to fulfill minimum pulse width requirements tDQSH (MIN) and
tDQSL (MIN) as defined for regular writes. The maximum pulse width is system-dependent.
4. Differential DQS is the differential data strobe (DQS, DQS#). T iming reference points are the
zero crossings. The solid line represents DQS; the dotted line represent s DQS#.
5. DRAM drives leveling feedback on a prime DQ (DQ0 for x4 and x8). The remaining DQ are
driven LOW and remain in this state throughout the leveling procedure.
Write Leveling Mode Exit Procedure
After the DRAM are leveled, they must exit from write le ve li ng mo de be fore the normal
mode can be used. Figure 49 on page107 depicts a general procedure in exiting write
leveling mode. After the last rising DQS (capturing a “1” at T0), the mem o ry controller
should stop driving the DQS signals after tWL O (MAX) delay plus enough delay to enable
the memory controller to capture the applicable prime DQ state (at ~Tb0). The DQ balls
become undefined when DQS no longer remains LOW, and they remain undefined until
tMOD after the MRS command (at Te1).
The ODT input sh ould be de as se rted LOW such that ODTL off (MIN) expir es after the
DQS is no longer driving LOW. When ODT LOW satisfies tIS, ODT must be kept LOW (at
~Tb0) until the DRAM is ready for either another rank to be leveled or until the normal
mode can be use d. A fte r DQ S termination is switc h e d off, write level mode should be
disabled via the MRS command (at Tc2). After tMOD is sati sfied (at Te1), any valid
command may be registered b y the DRAM. Some MRS commands may be issued after
tMRD (at Td1).
CK
CK#
Command
T1 T2
Early remaining DQ
Late remaining DQ
tWLOE
NOP2 NOP
MRS1 NOP NOP NOP NOP NOP NOP NOP NOP NOP
tWLS
tWLH
Dont Care Undefined Driving Mode
Indicates a Break in
Time Scale
Prime DQ5
Differential DQS4
ODT
tMOD
tDQSL3
tDQSH3
tDQSH3
tWLO
tWLMRD
tWLDQSEN
tWLO
tWLO
tWLO
tDQSL3
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 107 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Commands
Figure 49: Exit Write Leveling
Notes: 1. The DQ result, “= 1,” between Ta0 and Tc0, is a result of the DQS, DQS# signals capturing CK
HIGH just after the T0 state.
NOP
CK
T0 T1 T2 Ta0 Tb0Tc0Tc1Tc2Td0Td1 Te0 Te1
CK#
Command
ODT
RTT_DQ
NOPNOP NOP NOP NOP NOP MRSNOP NOP
Address MR1
ValidValid
ValidValid
Dont CareTransitioning
RTT DQS, RTT DQS#RTT_NOM
Undefined Driving Mode
tAOF (MAX)
tMRD
Indicates a Break in
Time Scale
DQS, DQS#
CK = 1
DQ
tIS
tAOF (MIN)
tMOD
tWLO + tWLOE
ODTL off
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 108 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Operations
Initialization
The follo wing sequence is r equir ed for po wer up and initialization, as sho wn in Figur e50
on page 109 :
1. Apply power. RESET# is recommende d to be below 0.2 × VDDQ during power ramp to
ensure the outputs remain disabled (High-Z ) and ODT off (RTT is also High-Z). All
other inputs, including ODT, may be undefined.
During power up, either of the following condi ti o ns ma y exist and must be met:
Condition A:
–V
DD and VDDQ are driven from a single-power converter output and are ramped
with a maximum delta voltage between them of ΔV 300mV. Slope reversal of any
power supply signal is allowed. The voltage levels on all balls other than VDD,
VDDQ, VSS, VSSQ must be less than or equal to VDDQ and VDD on one side, and
must be greater than or equal to VSSQ and VSS on the other side.
–Both V
DD and VDDQ power supplies ramp to VDD (MIN) and VDDQ (MIN) within
tVDDPR = 200ms.
–V
REFDQ tracks VDD × 0.5, VREFCA tracks VDD ×0.5.
–V
TT is limited to 0.95V when the power ramp is complete and is not applied directly
to the device; ho wever, tVTD should be gr eater than or equal to zer o to avoid device
latchup.
Condition B:
–V
DD may be applied before or at the same time as VDDQ.
–V
DDQ may be applied before or at the same time as VTT, VREFDQ, and VREFCA.
No slope reversals are allowed in the power supply ramp for this condition.
2. Until stable power, maintain RESET# LOW to ensure the outputs remain disabled
(High-Z). After the po wer is stable, RESET# must be LOW for at least 200µs to begin
the initialization proces s. ODT will remain in the High-Z state while RESET# is LOW
and until CKE is registered HIGH.
3. CKE must be LOW 10ns pr ior to RESET# transitioning HIGH.
4. After RESET# transitions HIGH, wait 500µs (minus one clock) with CKE LOW.
5. After this CKE LOW time, CKE may be brought HIGH (sy nch ronously) and only NOP
or DES commands may be issued. The clock must be present and valid for at least
10ns (and a minimum of five clocks ) and ODT mus t be driven L O W at le ast tIS prior to
CKE being registered HIGH. When CKE is registered HIGH, it must be continuously
registered HIGH until the full initialization process is complete.
6. After CKE is registered HIGH and after tXPR has been satisfied, MRS commands may
be issued. I ssue an MRS (LO AD MODE) command to MR2 with the applicable settings
(provide LOW to BA2 and BA0 and HIGH to BA1).
7. Issue an MRS command to MR3 with the applicable settings.
8. Issue an MRS command to MR1 with the applicable settings, including enabling the
DLL and configuring ODT.
9. Issue an MRS command to MR0 with the applicable settings, including a DLL RESET
command. tDLLK (512) cycles of clock input are required to lock the DLL.
10. Issue a ZQCL command to calibrate RTT and RON values for the process voltage tem-
peratur e (PVT). Prior to normal operation, tZQINIT must be satisfied.
11. When tDLLK and tZQINIT have been satisfied, the DDR3 SDRAM will be ready for nor-
mal operation.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 109 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 50: Initialization Sequence
CKE
R
TT
BA[2:0]
All voltage
supplies valid
and stable
T = 200µs (MIN)
DM
DQS
Address
A10
CK
CK#
tCL
CommandNOP
T0 Ta0
Dont Care
tCL
tIS
tCK
ODT
DQ
Tb0
tDLLK
MR1 with
DLL enable MR0 with
DLL reset
tMRD tMOD
MRSMRS
BA0 = H
BA1 = L
BA2 = L
BA0 = L
BA1 = L
BA2 = L
Code Code
Code Code
Valid
Valid
Valid
Valid
Normal
operation
MR2 MR3
tMRD tMRD
MRSMRS
BA0 = L
BA1 = H
BA2 = L
BA0 = H
BA1 = H
BA2 = L
Code Code
Code Code
Tc0Td0
V
TT
V
REF
V
DD
Q
V
DD
RESET#
T = 500µs (MIN)
tCKSRX
Stable and
valid clock
Valid
Power-up
ramp
T (MAX) = 200ms
DRAM ready for
external commands
T1
tZQ
INIT
ZQ calibration
A10 = H
ZQCL
tIS
See power-up
conditions
in the
initialization
sequence text,
set up 1
tXPR
Valid
= 20ns
tIOz
Indicates a Break in
Time Scale
T (MIN) = 10ns
tVTD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 110 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Mode Registers
Mode registers (MR0–MR3) are used to define various modes of programmable opera-
tions of the DDR3 SDRAM. A mode register is programmed via the MODE REGISTER
SET (MRS) command during initializa tion , and it retains the stored information (except
for MR0[8] which is self-clearing) until it is either repr ogrammed, RESET# goes LOW, or
until the device loses power.
Contents of a mode r egi ster can be altered by re executing the MRS com mand. If the use r
chooses to modify only a subset of the mode register’s variables, all variables must be
programm ed when the MRS c ommand is i ssue d. Reprogramming the mode register will
not alter the contents of the memory array, provided it is performed correctly.
The MRS command can only be iss ued (or reissued) when all banks are idle and in the
precharged state (tRP is sati sfi e d and no dat a burst s are in progress). After an MRS
command has been issued, two parameters must be satisfied: tMRD and tMOD.
The controller must wait tMRD before initiating any subsequent MRS commands (see
Figure 51).
Figure 51: MRS-to-MRS Command Timing (tMRD)
Notes: 1. Prior to issuing the MRS command, all banks must be idle and precharged, tRP (MIN) must
be satisfied, and no data bursts can be in progress.
2. tMRD specifies the MRS-to-MRS command minimum cycle time.
3. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN) (see “Power-
Down Mode” on page 153).
4. For a CAS latency change, tXPDLL timing must be met before any nonMRS command.
The controller must also wait tMOD before initiating any nonMRS commands
(excluding NOP and DES), as sho wn in Figur e52 on page 111. The DRAM requir es tMOD
in order to update the requested features, with the exception of DLL RESET, which
requires additional time. Until tMOD has been satisfied, the updated features are to be
assumed unavailable.
ValidValid
MRS1MRS2
NOP NOP NOP NOP
T0 T1 T2 Ta0 Ta1 Ta2
CK#
CK
Command
Address
CKE3
Dont Care
Indicates a Break in
Time Scale
tMRD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 111 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 52: MRS-to-nonMRS Command Timing (tMOD)
Notes: 1. Prior to issuing the MRS command, all banks must be idle (they must be precharged, tRP
must be satisfied, and no data bursts can be in pro gress).
2. Prior to Ta2 when tMOD (MIN) i s being satisfied, no commands (except NOP/DES) may be
issued.
3. If RTT was previously enabled, ODT must be registered LOW at T0 so that ODTL is satisfied
prior to Ta1. ODT must also be registered LOW at each rising CK edge from T0 until
tMOD (MIN) is satisfied at Ta2.
4. CKE must be registered HIGH from the MRS command until tMRSPDEN (MIN), at which time
power-down may occur (see “Power-Down Mode” on page 153).
Mode Register 0 (MR0)
The base register, MR0, is used to define various DDR3 SDRAM modes of operation.
These definitions include the selection of a burst length, burst type, CAS latency, oper-
ating mode, DLL RESET, write recovery, and pr echarge power-down mode, as shown in
Figure 53 on page112.
Burst Length
Burst length is defined b y MR0[1: 0] (see Fi gur e 53 on page 112). Read and w rite accesses
to the DDR3 SDRAM are burst-oriented, with the burst length being programmable to
“4” (chop mode), “8” (fixed), or selectable using A 12 during a READ/WRITE comm and
(on-the-fly). The burst length determines the maximum number of column locations
that can be accessed for a given READ or WRITE command. When MR0[1:0] is set to “01
during a READ/WRITE command, if A12 = 0, then BC4 (chop) mode is selected. If
A12 = 1, then BL8 mode is selected. Specific timing diagrams, and turnaround between
READ/WRITE, are shown in the READ/WRITE sections of this document.
When a READ or WRITE comm and is issu ed , a block of col u m n s eq ual to the bu rst
length is effectivel y selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached. The block is
uniquely selected by A[i:2] when the burst length is set to “4” and by A[i:3] when the
burst length is set to “8” (where Ai is the most significant column addres s bit for a given
configuration). The remaining (least significant) address bit(s) is (are) used to select the
starting location within th e block. The programmed burst length applies to both READ
and WRITE bursts.
ValidValid
MRSnon
MRS
NOP NOP NOP NOP
T0 T1 T2 Ta0 Ta1 Ta2
CK#
CK
Command
Address
CKE Valid
Updating setting
Old
settingNew
setting
Dont Care
Indicates a Break in
Time Scale
tMOD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 112 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 53: Mode Register 0 (MR0) Definitions
Notes: 1. MR0[16, 13, 7, 2] are reserved for future use and must be programmed to “0.”
Burst Type
Accesse s within a gi ven burst may be programmed to either a sequential or an inter-
leaved order. The burst type is selected via MR0[3], as shown in Figure 53. The ordering
of accesses within a burst is determined by the burst length, the burst type, and the
starting column address, as shown in Table 69 on page 113. DDR3 only supports 4-bit
burst chop and 8-bit burst access modes. Full interleave address ordering is supported
for READs, while WRITEs are restricted to nibble (BC4) or word (BL8) boundaries.
01BL
CAS# latency BTPD
A9 A7 A6 A5 A4 A3A8 A2 A1 A0
Mode register 0 (MR0)
Address bus
9765438210
A10A12 A11BA0BA1
10111213
M3
0
1
READ Burst Type
Sequential (nibble)
Interleaved
CAS Latency
Reserved
5
6
7
8
9
10
11
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
M6
0
0
0
0
1
1
1
1
15 DLL
Write Recovery
Reserved
5
6
7
8
10
12
Reserved
WR00
M12
0
1
Precharge PD
DLL off
(slow exit)
DLL on
(fast exit)
BA2
16
01
Burst Length
Fixed BL8
4 or 8 (on-the-fly via A12)
Fixed BC4 (chop)
Reserved
M0
0
1
0
1
M1
0
0
1
1
M9
0
1
0
1
0
1
0
1
M10
0
0
1
1
0
0
1
1
M11
0
0
0
0
1
1
1
1
M14
0
1
0
1
M15
0
0
1
1
Mode Register
Mode register 0 (MR0)
Mode register 1 (MR1)
Mode register 2 (MR2)
Mode register 3 (MR3)
A13
14 0101
M8
0
1
DLL Reset
No
Yes
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 113 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Notes: 1. Internal READ and WRITE operations sta rt at the same point in time for BC4 as they do for
BL8.
2. Z = Data and strobe output drivers are in tri-state.
3. V = A valid logic level (0 or 1), but the respective input buff er ignore s level-on input pins.
4. X = “Don’t Care.”
DLL RESET
DLL RESET is defined by MR0[8] (see Figure53 on page 112). Programming MR0[8] to
“1” activates the DLL RESET function. MR0[8] is self-cl earing, meaning it returns to a
value of “0” after the DLL RESET function has been initiated.
Anytime the DLL RESET function is initiated, CKE must be HIGH and the clock held
stable for 512 (tDLLK) clock cycles before a READ command can be issued. This is to
allow time for the internal clock to be synchronized with the external clock. Failing to
wait for synchronization to occur may result in invalid output timi ng speci fic ati ons,
such as tDQSCK timings.
Write Recovery
WRITE reco very time is defined by MR0[11:9] (see Figur e 53 on page 112). W rite reco very
values of 5, 6, 7, 8, 10, or 12 may be used by programming MR0[11:9]. The user is
requir ed to pr ogram the corr ect val ue of write re co very and is calculated b y dividing tWR
(ns) by tCK (ns) and rounding up a noninteger value to the next integer: WR (cycles) =
roundup (tWR [ns]/tCK [ns]).
Table 69: Burst Order
Burst
Length READ/
WRITE
Starting Column
Address
(A[2, 1, 0]) Burst Type = Sequential
(Decimal) Burst Type = Interleaved
(Decimal) Notes
4 chop READ 0 0 0 0, 1, 2, 3, Z, Z, Z, Z 0, 1, 2, 3, Z, Z, Z, Z 1, 2
0 0 1 1, 2, 3, 0, Z, Z, Z, Z 1, 0, 3, 2, Z, Z, Z, Z 1, 2
0 1 0 2, 3, 0, 1, Z, Z, Z, Z 2, 3, 0, 1, Z, Z, Z, Z 1, 2
0 1 1 3, 0, 1, 2, Z, Z, Z, Z 3, 2, 1, 0, Z, Z, Z, Z 1, 2
1 0 0 4, 5, 6, 7, Z, Z, Z, Z 4, 5, 6, 7, Z, Z, Z, Z 1, 2
1 0 1 5, 6, 7, 4, Z, Z, Z, Z 5, 4, 7, 6, Z, Z, Z, Z 1, 2
1 1 0 6, 7, 4, 5, Z, Z, Z, Z 6, 7, 4, 5, Z, Z, Z, Z 1, 2
1 1 1 7, 4, 5, 6, Z, Z, Z, Z 7, 6, 5, 4, Z, Z, Z, Z 1, 2
WRITE 0 V V 0, 1, 2, 3, X, X, X, X 0, 1, 2, 3, X, X, X, X 1, 3, 4
1 V V 4, 5, 6, 7, X, X, X, X 4, 5, 6, 7, X, X, X, X 1, 3, 4
8 READ 0 0 0 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1
0 0 1 1, 2, 3, 0, 5, 6, 7, 4 1, 0, 3, 2, 5, 4, 7, 6 1
0 1 0 2, 3, 0, 1, 6, 7, 4, 5 2, 3, 0, 1, 6, 7, 4, 5 1
0 1 1 3, 0, 1, 2, 7, 4, 5, 6 3, 2, 1, 0, 7, 6, 5, 4 1
1 0 0 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3 1
1 0 1 5, 6, 7, 4, 1, 2, 3, 0 5, 4, 7, 6, 1, 0, 3, 2 1
1 1 0 6, 7, 4, 5, 2, 3, 0, 1 6, 7, 4, 5, 2, 3, 0, 1 1
1 1 1 7, 4, 5, 6, 3, 0, 1, 2 7, 6, 5, 4, 3, 2, 1, 0 1
WRITE V V V 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 1, 3
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 114 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Precharge Power-Down (Precharge PD)
The prechar ge PD bit applies only when precharge power-down mode is being used.
When MR0[12] is set to “0,” the DLL is off during precharge power- down providing a
lower standb y current mode; howe ver, tXPDLL must be satisfied when exiting. When
MR0[12] is set to “1,” the DLL continues to run during precharge power-down mode to
enable a faster exit of precharge po wer-do wn mode; however, tXP must be satisfied when
exiting (see “Power-Down Mode” on page 153).
CAS Latency (CL)
The CL is defined by MR0[6:4], as shown in Figure 53 on page 112. CAS latency is the
delay, in clock cycles, between the internal READ command and the availability of the
first bit of output data. The CL can be set to 5, 6, 7, 8, 9, or 10. DDR3 SDRAM do not
support half-clock latencies.
Examples of CL = 6 and CL = 8 are shown in Figure 54. If an internal READ command is
registered at clock edge n, and the CAS latency is m clocks, the data will be available
nominally coincident with clock edge n + m. Table 50 on page 66 through Table 52 on
page 68 indicate the CLs supported at various operating frequencies.
Figure 54: READ Latency
Notes: 1. For illustration purposes, only CL = 6 and CL = 8 are shown. Other CL values are possible.
2. Shown with nominal tDQSCK and nominal tDSDQ.
READ NOP NOP NOP NOP NOP NOPNOP
CK
CK#
Command
DQ
DQS, DQS#
DQS, DQS#
T0 T1 T2 T3 T4 T5 T6 T7 T8
Don’t Care
CK
CK#
Command
DQ
READ NOP NOP NOP NOP NOP NOPNOP
T0 T1 T2 T3 T4 T5 T6 T7 T8
DI
n + 3
DI
n + 1 DI
n + 2 DI
n + 4
DI
n
DI
n
NOP
NOP
AL = 0, CL = 8
AL = 0, CL = 6
Transitioning Data
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 115 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Mode Register 1 (MR1)
The mode register 1 (MR1) controls additional functions and featur es not available in
the other mode registers: Q OFF (OUTPUT DISABLE), TDQS (for the x8 configuration
only), DLL ENABLE/DLL DISABLE, RTT_NOM value (ODT), WRITE LEVELING, POSTED
CAS ADDITIVE latency, and OUTPUT DRIVE STRENGTH. These functions are
controlled via the bits shown in Figure 55. The MR1 register is programmed via the MRS
command and r etains the st ored information until it is reprogrammed, until RESET#
goes LOW, or until the device loses power. Reprogramming the MR1 register will not
alter the contents of the memory array, provided it is performed correctly.
The MR1 register must be loaded when all banks are idle and no bursts are in progress.
The controller must sati sfy the specifi ed timing parameters tMRD and tMOD before
initiating a subsequent operation.
Figure 55: Mode Register 1 (MR1) Definition
Notes: 1. MR1[16, 13, 10, 8] are reserved for future use and must be programmed to “0.”
2. During write leveling, if MR1[7] and MR1[12] are “1” then all RTT_NOM values are available
for use.
3. During write leveling, if MR1[7] is a “1,” but MR1[12] is a “0,” then only RTT_NOM write val-
ues are available for use.
DLL Enable/DLL Disable
The DLL may be enabled or disabled by programming MR1[0] during the LOAD MODE
command, as shown in Figure55. The DLL must be enabled for normal operation. DLL
enable is required during power-up initialization and upon returning to normal opera-
tion after having disabled the DLL for the purpose of debugging or evaluation. Enabling
the DLL should always be followed by resetting the DLL using the appropriate LOAD
MODE command.
If the DLL is enabled prior to entering self refresh mode, the DLL is automatically
disabled when entering SELF REFRESH operation and is automatically reenabled and
reset upon exit of SELF REFRESH operation. If the DLL is disabled prior to entering self
refresh mode, the DLL remains disabled even upon exi t of SELF REFRESH operation
until it is reenabled and reset.
AL R
TT
Q Off
A9 A7 A6 A5 A4 A3 A8 A2 A1 A0
Mode register 1 (MR1)
Address bus
9 7 6 5 4 3 8 2 1 0
A10 A12 A11 BA0 BA1
10 11 12 13
M0
0
1
DLL Enable
Enable (normal)
Disable
M5
0
0
1
1
Output Drive Strength
RZQ/6 (40Ω [NOM])
RZQ/7 (34Ω [NOM])
Reserved
Reserved
14 WL
1 0 ODS DLL R
TT
TDQS
M12
0
1
Q Off
Enabled
Disabled
BA2
15 01
M7
0
1
Write Levelization
Disable (normal)
Enable
Additive Latency (AL)
Disabled (AL = 0)
AL = CL - 1
AL = CL - 2
Reserved
M3
0
1
0
1
M4
0
0
1
1
R
TT
ODS
M1
0
1
0
1
A13
16
01
M11
0
1
TDQS
Disabled
Enabled
0101
R
TT
_
NOM
(ODT)2
Non-Writes
R
TT
_
NOM
disabled
RZQ/4 (60Ω [NOM])
RZQ/2 (120Ω [NOM])
RZQ/6 (40Ω [NOM])
RZQ/12 (20Ω [NOM])
RZQ/8 (30Ω [NOM])
Reserved
Reserved
R
TT
_
NOM
(ODT)3
Writes
R
TT
_
NOM
disabled
RZQ/4 (60Ω [NOM])
RZQ/2 (120Ω [NOM])
RZQ/6 (40Ω [NOM])
n/a
n/a
Reserved
Reserved
M2
0
1
0
1
0
1
0
1
M6
0
0
1
1
0
0
1
1
M9
0
0
0
0
1
1
1
1
Mode Register
Mode register set 0 (MR0)
Mode register set 1 (MR1)
Mode register set 2 (MR2)
Mode register set 3 (MR3)
M14
0
1
0
1
M15
0
0
1
1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 116 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
The DRAM is not tested to check—nor does Mi cron warrant compliance with—nor mal
mode timings or functionality when the DLL is disabled. An attempt has been made to
have the DRAM operate in the normal mode where reasonably possible when the DLL
has been disabled; however, by industry standard, a few known exceptions are defined:
1. ODT is not allowed to be used.
2. The output data is no longer edge-aligned to the clock.
3. CL and CWL can only be six clocks.
When the DLL is disabled, timing and functionality can vary from the normal operation
specifications when the DLL is enabled (see “DLL Disable Mode” on page 98). Disabling
the DLL also implies the need to change the clock frequency (see “ Input Clock
Frequency Change” on page 101).
Output Drive Strength
The DDR3 SDRAM uses a programmable impedance output buffer. The drive strength
mode register setting is defined by MR1[5, 1]. RZQ/7 (34Ω [NOM]) is the primary output
driver impedance setting for DDR3 SDRAM devices. To calibrate the output drive r
impedance, an external precision resistor (RZQ) is connected between the ZQ ball and
VSSQ. The value of the resistor must be 240Ω ±1%.
The output impedance is set during initialization. Additional impedance cal ib ration
updates do not affect device operation, and all data sheet timings and current specifica-
tions are met during an update.
To meet the 34Ω specification, the output drive strength must be set to 34Ω during
initialization. To obtain a calibrated output driver impedance after power-up, the DDR3
SDRAM needs a calibration command that is part of the initialization and r eset proce-
dure.
OUTPUT ENABLE/DISABLE
The OUTPUT ENAB LE funct ion is de fined by MR1[12], as shown in Figure 55 on
page 115. When enabled (MR1[12] = 0), all outputs (DQ, DQS, DQS#) function when in
the normal mode of operation. When disabled (MR1[12]= 1), all DDR3 SDRAM outputs
(DQ and DQS, DQS#) are tri-stated. The output disable feature is intended to be used
during IDD characterization of the READ current and during tDQSS margining (write
leveling) only.
TDQS Enable
Termination data strobe (TDQS) is a feature of the x8 DDR3 SDRAM configuration,
which provides termination resistance (RTT), that may be useful in some system config-
urations. TDQS is not supported in x4 or x16 configurations. When enabled via the mode
regi ster (MR1[11]), the RTT that is appl ied to DQS and DQS# is also applied to TDQS and
TDQS#. In contrast to the RDQS function of DDR2 SDRAM, TDQS provides the termina-
tion resistance RTT only. The OUTPUT DATA STROBE function of RDQS is not provided
by TDQS; thus, RON does not apply to TDQS and TDQS#. The TDQS and DM functions
share the same ball. When the TDQS function is enabled via the mode re gister, the DM
function is not supported. When the TDQS function is disabled, the DM function is
pro vided, and the TDQS# ball is not used. The TDQS function is avai lable in the x8 D DR3
SDRAM configuration only and must be disabled via the mode r egister for the x4 and x16
configurations.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 117 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
On-Die Termination
ODT resistance RTT_NOM is defined by MR1[9, 6, 2] (see Figure 55 on page 115). The R TT
termination value a ppl ie s to the DQ , DM, DQS, DQS#, and TDQS, TDQS# balls. DDR3
supports multiple RTT termination values based on RZQ/n wher e n can be 2, 4, 6, 8, or 12
and RZQ is 240Ω.
Unlike DDR2, DDR3 ODT must be turned off prior to reading data out and must re m ain
off during a READ burst. RTT_NOM termination is allowed any time after the DRAM is
initialized, calibrated, and not performing read access, or when it is not in self refresh
mode. Additionally, write accesses with dynamic ODT enabled (RTT_WR) temporarily
replaces RTT_NOM with RTT_WR.
The actual effective te rmination, R TT_EFF, may be different from the RTT targeted due to
nonlinearity of the termination. For RTT_EFF values and calculations (see “On-Die
Termination (ODT)” on page 161).
The ODT feature is designed to improve signal integr ity of the memory channel by
enabling the DDR3 SDRAM controller to independently turn on/off ODT for any or all
devices. The ODT input control pin is used to determine when RTT is turned on (ODTL
on) and off (ODTL off), assuming ODT has been enabled via MR1[9, 6, 2].
Timings for ODT are detailed in “On-Die Termination (ODT)” on page 161.
WRITE LEVELING
The WRITE LEVELING function is enabled by MR1[7], as shown in Figure 55 on
page 115. Write leveling is used (during initialization) to de skew the DQS strobe to clock
offset as a result of fly-by topology designs. For better signal integrity, DDR3 SDRAM
memory modules adopted fly -by t opology for the commands, addr esses, control signals,
and clocks.
The fly -b y topology benefits fr om a reduced number of stubs and the ir lengths . H o weve r,
fly -by topology induces flight time skews betwee n the clock and DQS strobe (and DQ) at
each DRAM on th e DIMM. Controllers will have a difficult time maint a ini n g tDQSS,
tDSS, and tDSH specifications wit h out supporting wri te le ve li ng in systems which use
fly-by topology-based modules. Write leveling timing and detailed operation informa-
tion is provided in “Write Leveling” on page 103.
POSTED CAS ADDITIVE Latency (AL)
AL is supported to make the command and data bus efficient for sustainable band-
widths in DDR3 SDRAM. MR1[4, 3] define the value of AL as shown in Figure 56 on
page 118. MR1[4, 3] enable the user to program th e DD R3 SD RAM with an A L = 0, CL- 1,
or CL - 2.
With this feature, the DDR3 SDRAM enables a READ or WRITE command to be issued
after the ACTIVATE co mmand for that bank prior to tRCD (MIN). The only restriction is
ACTIVATE to READ or WRITE + AL tRCD (MIN) must be satisfied. Assuming
tRCD(MIN) = CL, a typical application using this feature sets AL= CL - 1tCK =
tRCD (MIN) - 1 tCK. The READ or WRITE command is held for the time of the AL before
it is released internally to the DDR3 SDRAM device . READ latency (RL) is controlled by
the sum of the AL and CAS latency (CL), RL = AL + CL. WRITE latency (WL) is the sum of
CAS WRITE latency and AL, WL = AL + CWL (see “Mode Register 2 (MR2)” on page 118).
Examples of R E AD and WRITE latencies are shown in Figure 56 on page 118 and
Figure 58 on page119.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 118 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 56: READ Latency (AL = 5, CL = 6)
Mode Register 2 (MR2)
The mode register 2 (MR2) controls additional functions and featur es not available in
the other mode registers. These additional functions are CAS WRITE latency (CWL),
AUTO SELF R EFRESH (ASR), SELF REFRESH TEMPERATUR E (SRT), and DYNAMIC
ODT (RTT_WR). These functions are controlled via the bits shown in Figure 57. The MR2
is programmed via the MRS command and will retain the stored information until it is
programmed again or until the device loses pow er . R eprogramming the MR2 r egister will
not alter the contents of the memory array, provided it is performed correctly. The MR2
register must be loaded when all banks are idle and no data bursts are in pr ogress, and
the controller must wait the specified time tMRD and tMOD before initiating a subse-
quent operation.
Figure 57: Mode Register 2 (MR2) Definition
Notes: 1. MR2[16, 13:11, 8, and 2:0] are res erved for future use and must all be programmed to “0.”
CK
CK#
Command
DQ
DQS, DQS#
ACTIVE n
T0 T1
Don’t Care
NOP NOP
T6 T12
NOPREAD n
T13
NOP
DO
n + 3
DO
n + 2
DO
n + 1
RL = AL + CL = 11
T14
NOP
DO
n
tRCD (MIN)
AL = 5 CL = 6
T11
BC4
Indicates a Break in
Time Scale Transitioning Data
T2
NOP
M14
0
1
0
1
M15
0
0
1
1
Mode Register
Mode register set 0 (MR0)
Mode register set 1 (MR1)
Mode register set 2 (MR2)
Mode register set 3 (MR3)
A9 A7 A6A5 A4 A3A8 A2 A1 A0
Mode register 2 (MR2)
Address bus
9765438210
A10A12 A11BA0BA1
101112131415
1CWL
01
0
BA2
ASR
16
01
A13
0101010101
01SRT
R
TT
_
WR
M6
0
1
Auto Self Refresh
(Optional)
Disabled: Manual
Enabled: Automatic
M7
0
1
Self Refresh Temperature
Normal (0°C to 85°C)
Extended (0°C to 95°C)
CAS Write Latency (CWL)
5 CK (tCK 2.5ns)
6 CK (2.5ns > tCK 1.875ns)
7 CK (1.875ns > tCK 1.5ns)
8 CK (1.5ns > tCK 1.25ns)
Reserved
Reserved
Reserved
Reserved
M3
0
1
0
1
0
1
0
1
M4
0
0
1
1
0
0
1
1
M5
0
0
0
0
1
1
1
1
M9
0
1
0
1
M10
0
0
1
1
Dynamic ODT
( R
TT
_
WR
)
R
TT
_
WR
disabled
RZQ/4
RZQ/2
Reserved
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 119 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
CAS Write Latency (CWL)
CWL is defined by MR2[5:3] and is the delay, in clock cycles, from the releasing of the
internal wr it e to the latching of the first data in. CWL must be correctly set to the corre-
sponding operating clock frequency (see Figure 57 on page 118). The overall WRITE
latency (WL) is equal to CWL + AL (Figure 55 on page 115), as sho wn in Figure 58.
Figure 58: CAS Write Latency
AUTO SELF REFRESH (ASR)
Mode r egister MR2[6] is used to disable/enable the ASR function.
When ASR is disabled , the self refresh modes refresh rate is assumed to be at the normal
85°C limit (sometimes referred to as 1X refresh rate). In the disabled mode, ASR requires
the user to ensure the DRAM never exceeds a TC of 85°C while in self refresh unless the
user enables the SRT feature listed below when the TC is between 85°C and 95°C.
Enabling ASR assume s the DRA M se lf refresh rate is change d auto ma tically from 1X to
2X when the case temperature exceeds 85°C. This enables the user to operate the DRAM
beyond the standard 85°C limit up to the optional extended temperature range of 95°C
while in self refresh mode.
The standard self refresh current test specifies test condi ti ons to nor m al case tempera-
ture (85°C) only, meaning if ASR is enabled, th e st andard sel f refres h cu rrent specifica-
tions do not apply (see “Extended Temperature Usage” on page 152).
SELF REFRESH TEMPERATURE (SRT)
Mode register MR2[7] is used to disable/enable the SRT function. When SRT is disabled,
the self refresh mode s r efresh rate is assumed to be at the normal 85°C limit (sometimes
referred to as 1X refresh rate). In the disabled mode, SRT requires the user to ensure the
DRAM never exceeds a TC of 85°C while in se lf r efr es h mode unless the user enabl es ASR.
When SRT is enabled, the DRAM self refresh is changed internally from 1X to 2X, regard-
less of the case temperature. This enables the user to operate the DRAM beyond the
standard 85°C limit up to the optional extended temperature range of 95°C while in self
refresh mode. The standard self re fresh curren t test specifies test conditions to normal
case temperature (85°C) only, meaning if SRT is enabled, the standard self refresh
current specifications do not apply (see “Extended Temperatur e Usage” on page 152).
CK
CK#
Command
DQ
DQS, DQS#
ACTIVE n
BC4
T0 T1
Don’t Care
NOP NOP
T6 T12
NOPWRITE n
T13
NOP
DI
n + 3
DI
n + 2
DI
n + 1
T14
NOP
DI
n
tRCD (MIN)
NOP
AL = 5
T11
Indicates A Break in
Time Scale
WL = AL + CWL = 11
Transitioning Data
T2
CWL = 6
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 120 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
SRT vs. ASR
If the normal case temper ature limi t of 85°C is not exceeded, then neither SR T nor ASR is
required, and both can be disabled throughout operation. However, if the extended
temperature option of 95°C is needed, the user is required to provide a 2X refresh rate
during (manual) refresh and to enable either the SRT or the ASR to ensure self refresh is
performed at the 2X rate.
SRT forces the DRAM to switch the internal self refresh rate from 1X to 2X. Self refresh is
performed at the 2X refresh rate regardless of the case temperature.
ASR automatically switches the DRAMs internal self refresh rate from 1X to 2X. However ,
while in self refresh mode, ASR enables the refresh rate to automatically adjust betw een
1X to 2X over the supported temperature range. On e other disadvantage with ASR is the
DRAM cannot always switch from a 1X to a 2X refresh rate at an exact case temperature
of 85°C. Although the DRAM will support data int egrity when it switches from a 1X to a
2X refresh rate, it may switch at a lower temperature than 85°C.
Since only one mode is neccesary, SRT and ASR cannot be enabled at the same time.
DYNAMIC ODT
The dynamic ODT (RTT_WR) feature is defined by MR2[10, 9]. Dynamic ODT is enabled
when a value is selected. This new DDR3 SDRAM feature enables the ODT termination
value to change without issuing an MRS command, essentiall y changing the ODT termi-
nation “on-the-fly.
With dynamic ODT (RTT_WR) enabled, the DRAM swit ches from normal ODT (RTT_NOM)
to dynamic ODT (RTT_WR) when beginning a WRITE burst and subsequently switches
back to ODT (RTT_NOM) at the completion of the WRITE burst. If RTT_NOM is disabled,
the RTT_NOM value will be High-Z. Special timing parameters must be adhered to when
dynamic ODT (RTT_WR) is enabled: ODTLCNW, ODTLCNW4, ODTL CNW8, ODTH4,
ODTH8, and tADC.
Dynamic ODT is only applicable during WRITE cycles. If ODT (RTT_NOM) is disabled,
dynamic ODT (RTT_WR) is still permitted. RTT_NOM and RTT_WR can be used indepen-
dent of one other. Dynamic ODT is not available during write leveling mode, regardless
of the state of ODT (RTT_NOM). For details on dynamic ODT operation, refer to “On-Die
Termination (ODT)” on page 161.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 121 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Mode Register 3 (MR3)
The mode register 3 (MR3) controls additional functions and featur es not available in
the other mode registe rs. Currently defined is the MULTIPURPOSE REGISTER (MPR).
This function is controlled via the bits shown in Figure59. The MR3 is programmed via
the LO AD MODE command and retains the stored information until it is programmed
again or until the device loses power. Repr ogramming the MR3 register will not alter the
contents of the memory array, pro vi ded it i s performed correctly. The MR3 r egi ster must
be loaded when all banks are idle and no data bursts are in progress, and the controller
must wait the specified time tMRD and tMOD before initiating a subsequent operation.
Figure 59: Mode Register 3 (MR3) Definition
Notes: 1. MR3[16 and 13:4] are reserved for future use and must all be programmed to “0.”
2. When MPR control is set for normal DRAM operation, MR3[1, 0] will be ignored.
3. Intended to be u sed for READ synchronization.
MULTIPURPOSE REGISTER (MPR)
The MULTIPURPOSE REGISTER function is used to output a predefined system tim ing
calibration bit sequence. Bit 2 is the master bit that enables or disables access to the
MPR register, and bits 1 and 0 determine which mode the MPR is placed in. The basic
concept of the multipurpose register is shown in Figure60 on page 122.
If MR3[2] is a “0,” then the MPR access is disabled, and the DRAM operates in normal
mode. However, if MR3[2] is a “1,” then the DRAM no longer outputs normal read data
but outputs MPR data as defined by MR3[0, 1]. If MR3[0, 1] is equal to “00,” then a
predefined read pattern for system ca li bration is selected.
To enable the MPR, the MRS command is issued to MR3, and MR3[2] = 1 (see Table 70 on
page 122). Prior to issuing the MRS command, all banks must be in the idle state (all
banks are pr echar ged, and tRP is met). When the MPR is enabled, any subsequent READ
or RDAP commands are redirected to the multipurpose register. The resulting operation
when either a READ or a RDAP command is issued, is defined by MR3[1:0] when the
MPR is enabled (see Table 71 on page 123). When the MPR is enabled, only READ or
RDAP commands are allo wed until a subsequent MRS command is issued with the MPR
disabled (MR3[2] = 0). Power-down mode, self refresh, and any other nonREAD/RDAP
command is not allowed during MPR enable mode. The RESET function is supported
during MPR enable mode.
A9 A7 A6A5 A4 A3A8 A2 A1 A0
Mode register 3 (MR3)
Address bus
9765438210
A10A12 A11BA0BA1
101112131415
A13
10
1010101010101
MPR
1
BA2
16
0101010101
M2
0
1
MPR Enable
Normal DRAM operations2
Dataflow from MPR
MPR_RF
M14
0
1
0
1
M15
0
0
1
1
Mode Register
Mode register set (MR0)
Mode register set 1 (MR1)
Mode register set 2 (MR2)
Mode register set 3 (MR3)
MPR READ Function
Predefined pattern3
Reserved
Reserved
Reserved
M0
0
1
0
1
M1
0
0
1
1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 122 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 60: Multipurpose Register (MPR) Block Diagram
Notes: 1. A predefined data pattern can be read out of the MPR with an external READ command.
2. MR3[2] defines whether the data flow comes from the memory core or the MPR. When the
data flow is defined, the MPR contents can be read out continuously with a regular READ or
RDAP command.
MPR Functional Description
The MPR JEDEC definition allows for either a prime DQ (DQ0 on a x4 and a x8; on a x16,
DQ0 = lower byte and DQ8 = upper byte) to output the MPR data with the remaining
DQs driven LOW or for all DQs to output the MPR data . The MPR readout supports fixed
READ burst and READ burst chop (MRS and OTF via A12/BC#) with regular R EAD laten-
cies and AC timings applicable, provided the DLL is locke d as required.
MPR addressing for a valid MPR read is as follows:
A[1:0] must be set to “00” as the burst order is fixed per nibble
•A2 selects the burst order:
BL8, A2 is set to “0,” and the burst order is fixed to 0, 1, 2, 3, 4, 5, 6, 7
For burst chop 4 cases, the burst order is switched on the nibble base and:
A2 = 0; burst order = 0, 1, 2, 3
A2 = 1; burst order = 4, 5, 6, 7
Burst order bit 0 (the first bit) is assigned to LSB, and burst order bit 7 (the last bit) is
assigned to MSB
A[9:3] are a “Dont Care
A10 is a “Dont Care
Table 70: MPR Functional Description of MR3 Bits
MR3[2] MR3[1:0]
FunctionMPR MPR READ Function
0 “Don’t Care” Normal operation, no MPR transaction
All subsequent READs come from the DRAM memory array
All subsequent WRITEs go to the DRAM memory array
1 A[1:0]
(see Table 71 on page 123) Enable MPR mode, subsequent READ/RDAP commands defined by bits 1 and 2
Memory core
MR3[2] = 0 (MPR off)
DQ, DM, DQS, DQS#
Multipurpose register
predefined data for READs
MR3[2] = 1 (MPR on)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 123 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
A11 is a “Dont Care
A12: Selects burst chop mode on-the-fly, if enabled within MR0
A13 is a “Dont Care
BA[2:0] are a “Dont Care
MPR Register Address Definitions and Bursting Order
The MPR currently supports a single data format. This data format is a predefined read
pattern for system calibration. The predefined pattern is always a repeating 0–1 bit
pattern.
Examples of the different types of pr edefined REA D pattern bursts are shown in
Figure 61 on page 124, Figure62 on page 125, Figure 63 on page 126, and Figure 64 on
page 127.
Notes: 1. Burst order bit 0 is assigned to LSB, and burst order bit 7 is assigned to MSB of the selected
MPR agent.
Ta ble 71: MPR Readouts and Burst Order Bit Mapping
MR3[2] MR3[1:0] Function Burst
Length Read
A[2:0] Burst Order and Data Pattern
1 00 READ predefined
pattern for system
calibration
BL8 00 0 Burst order: 0, 1, 2, 3, 4, 5, 6, 7
Predefined pattern: 0, 1, 0, 1, 0, 1, 0, 1
BC4 00 0 Burst order: 0, 1, 2, 3
Predefined pattern: 0, 1, 0, 1
BC4 10 0 Burst order: 4, 5, 6, 7
Predefined pattern: 0, 1, 0, 1
1 01 RFU n/a n/a n/a
n/a n/a n/a
n/a n/a n/a
1 10 RFU n/a n/a n/a
n/a n/a n/a
n/a n/a n/a
1 11 RFU n/a n/a n/a
n/a n/a n/a
n/a n/a n/a
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 124 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 61: MPR System Read Calibration with BL8: Fixed Burst Order Single Readout
Notes: 1. READ with BL8 either by MRS or OTF.
2. Memory controller must drive 0 on A[2:0].
T0 Ta0 Tb0 Tb1 Tc0 Tc1 Tc2 Tc3Tc4Tc5 Tc6 Tc7 Tc8 Tc9 Tc10
CK
CK#
MRSPREA READ1NOPNOP NOP NOP NOP NOP NOP NOP MRSNOP NOP ValidCommand
tMPRR
Dont Care
Indicates a Break in
Time Scale
DQS, DQS#
Bank address 3 Valid3
0A[1:0] Valid
02
1A2 020
00A[9:3] Valid00
01
A10/AP Valid0
0A11 Valid0
0A12/BC#Valid10
0A[15:13] Valid0
DQ
tMOD
tRP tMOD
RL
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 125 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 62: MPR System Read Calibration with BL8: Fixed Burst Order, Back-to-Back Readout
Notes: 1. READ with BL8 either by MRS or OTF.
2. Memory controller must drive 0 on A[2:0].
T0 Ta TbTc0 Tc1 Tc2 Tc3 Tc4Tc5Tc6 Tc7Tc8 Tc9 Tc10 Td
CK
CK#
tMPRR
Dont Care
Indicates a Break in
Time Scale
RL
3 Valid3Bank address Valid
A[1:0] Valid
02
02
0
A2 12
02
1 0
0
A[15:13] ValidValid0
A[9:3] ValidValid0000
A11 ValidValid00
A12/BC#Valid100
A10/AP ValidValid001
RL
PREA READ1NOP NOP NOP NOP NOP NOP NOP NOP NOP MRSValid
CommandREAD1
MRS
DQ
Valid
DQS, DQS#
tRP tMOD tCCDtMOD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 126 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 63: MPR System Read Calibration with BC4: Lower Nibble, Then Upper Nibble
Notes: 1. READ with BC4 either by MRS or OTF.
2. Memory controller must drive 0 on A[1:0].
3. A2 = 0 selects lower 4 nibble bits 0 . . . 3.
4. A2 = 1 selects upper 4 ni bbl e bits 4 . . . 7.
T0 Ta Tb
CK
CK#
DQ
DQS, DQS#
tMOD
tMPRR
Dont Care
Tc0Tc1Tc2Tc3Tc4Tc5Tc6 Tc7Tc8Tc9Tc10 Td
NOP NOP NOP NOP NOP MRSNOP NOP ValidCommandMRSPREA
READ1READ1
NOP NOP
Indicates a Break in
Time Scale
Bank address 3 Valid3Valid
0A[1:0] Valid
02
02
1A2 14
030
00A[9:3] ValidValid00
01A10/AP ValidValid0
0A11 ValidValid0
0A12/BC#Valid1Valid10
0
A[15:13] ValidValid0
RL
RL
tRF tMOD tCCD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 127 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 64: MPR System Read Calibration with BC4: Upper Nibble, Then Lower Nibble
Notes: 1. READ with BC4 either by MRS or OTF.
2. Memory controller must drive 0 on A[1:0].
3. A2 = 1 selects upper 4 ni bbl e bits 4 . . . 7.
4. A2 = 0 selects lower 4 nibble bits 0 . . . 3.
T0 Ta Tb
01A10/AP ValidValid0
CK
CK#
MRSPREA
READ1READ1
NOP NOP NOP NOP NOP NOP NOP MRSNOP NOP ValidCommand
0
04
13
1A2
tMOD
tMPRR
3 Valid3Bank address Valid
02
02
0A[1:0] Valid
00A[15:13] ValidValid
00A11 ValidValid
0000A[9:3] ValidValid
Dont Care
Tc0Tc1Tc2Tc3Tc4Tc5Tc6 Tc7Tc8Tc9Tc10 Td
Indicates a Break in
Time Scale
RL
DQ
DQS, DQS#
0A12/BC#Valid1Valid10
RL
tRF tMOD tCCD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 128 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
MPR Read Predefined Pattern
The predetermined re ad calibration pattern is a fixed pattern of 0, 1, 0, 1, 0, 1, 0, 1. The
following is an example of using the read out predetermined read calibration pattern.
The example is to per form multipl e reads from the multipurpose register in order to do
system level read timing calibrati o n based on the predetermined and standardized
pattern.
The following protocol outlines the steps used to perform th e read calibration:
Precharge all banks
•After
tRP is satisfied, set MRS, MR3[2] = 1 and MR3[1:0] = 00. This re directs all subse-
quent reads and loads the predefined pattern into the MPR. As soon as tMRD and
tMOD are satisfied, the MPR is available
Data WRITE operations are not allowed until the MPR returns to the normal DRAM
state
Issue a read with burst order information (all other address pins are “Dont Care”):
A[1:0] = 00 (data burst order is fixed starting at nibble)
A2 = 0 (for BL8, burst order is fixed as 0, 1, 2, 3, 4, 5, 6, 7)
A12 = 1 (use BL8)
After RL = AL + CL, the DRAM bursts out the predefined read calibration pattern
(0,1,0,1,0,1,0,1)
The memory controller repeats the calibration reads until read data capture at
memory controller is optimized
After the last MPR READ burst and after tMPRR has been satisfied, issue MRS,
MR3[2] = 0, and MR3[1:0] = “Dont Care” to the normal DRAM state. All subsequent
r ead and write accesses will be regular reads and writes from/to the DRAM array
•When
tMRD and tMOD are satisfied from the last MRS, the regula r DRAM commands
(such as activate a memory bank for regular read or write access) are permitted
MODE REGISTER SET (MRS)
The mode registers ar e loaded via inputs BA[2:0], A[13:0]. BA[2:0] determine which mode
register is programmed:
BA2 = 0, BA1 = 0, BA0 = 0 for MR0
BA2 = 0, BA1 = 0, BA0 = 1 for MR1
BA2 = 0, BA1 = 1, BA0 = 0 for MR2
BA2 = 0, BA1 = 1, BA0 = 1 for MR3
The MRS command can only be iss ued (or reissued) when all banks are idle and in the
precharged state (tRP is satisfied and no data bursts are i n progr ess). The controller m ust
wait the sp ec ified time tMRD before initiating a sub sequent operation such as an ACTI-
VATE command (see Figure51 on page 110). There is also a restriction after issuing an
MRS command with regard to when the updated functions become available. This
parameter is specified by tMOD. Both tMRD and tMOD parameters are shown in
Figure 51 on page 110 and Figur e52 on page 111. Violating either of these requirements
will result in unspecified operation.
ZQ CALIBRATION
The ZQ CALIBRATION command is used to calibrate the DRAM output drivers (RON)
and ODT values (RTT) over process, voltage, and temperature, provided a dedicated
240Ω (±1 percent) external resistor is connected from the DRAM’s ZQ ball to VSSQ.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 129 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
DDR3 SDRAM need a longer time to calibrate R ON and ODT at power-up initialization
and self refresh exit and a relatively shorter time to perform periodic calibrations. DDR3
SDRAM defines two ZQ CALIBRATION commands: ZQ CALIBRATION LONG (ZQCL)
and ZQ CALIBRATION SHORT (Z QCS). An example of ZQ calibration timing is shown in
Figure 65.
All banks must be precharged and tRP must be met before ZQCL or ZQCS commands
can be issued to the DRAM. No other activities (other than another ZQCL or ZQCS
command may be issued to another DRAM) can be performed on the DRAM channel by
the controller for the duration of tZQINIT or tZQOPER . The quiet time on the DRAM
channel helps acc urately c a li brate RON and ODT. After DRAM calibration is achieved,
the DRAM should disable the ZQ ball’s curre n t consumption path to reduce power.
ZQ CALIBRATION commands can be issued in parallel to DLL RESET and locking time.
Upon self refresh exit, an explicit ZQCL is required if ZQ calibration is desired.
In dual -rank systems that shar e the Z Q r esi stor betw een devic es, the controll er must not
allow overlap of tZQINIT, tZQOPER, or tZQCS between ranks.
Figure 65: ZQ Calibration Timing (ZQCL and ZQCS)
Notes: 1. CKE must be conti nuously registered HIGH during the calibration procedure.
2. ODT must be disabled via the ODT signal or the MRS during the calibration procedure.
3. All devices connected to the DQ bus should be High-Z during calibra tion.
ACTIVATE
Before any READ or WRITE commands can be issued to a bank within the DRAM, a row
in that bank must be opened (activated). This is accomplished via the ACTIVATE
command, wh ic h se lects both the bank and the row to be activated.
After a ro w is opened with an A CTIVATE command, a READ or WRITE command may be
issued to that row, subject to the tRCD specification. However, if the additive latency is
programmed correctly, a READ or WRITE command may be issued prior to tRCD (MIN).
In this operation, the DRAM enables a READ or WRITE command to be issued after the
ACTIVATE command for that bank, but prior to tRCD(MIN) with the requirement that
(ACTIVATE-to-READ/WRITE) + AL tRCD (MIN) (see “POSTED CAS ADDITIVE Latency
(AL)” on page 117). tRCD(MIN) should be divide d b y the clock period and rounded up to
NOPZQCL NOP NOP ValidValidZQCS NOP NOP NOP ValidCommand
Indicates a Break in
Time Scale
T0 T1 Ta0 Ta1 Ta2 Ta3 Tb0Tb1Tc0Tc1Tc2
Address ValidValidValid
A10 ValidValidValid
CK
CK#
Dont Care
DQ High-Z High-Z33Activities Activ-
ities
ValidValidODT 2 2 Valid
1
CKE 1 ValidValidValid
tZQCS
tZQ
INIT
or tZQ
OPER
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 130 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
the next whole number to determine the earliest clock edge after the A CTIVATE
command on which a READ or WRITE command can be entered. The same procedure is
used to convert other specification limits from time units to clock cycles.
When at least one bank is open, any READ-to-READ command delay or WRITE-to-
WRITE command delay is restricted to tCCD (MIN).
A subsequent ACTIVATE command to a different row in the same bank can only be
issued after the previous active row has been closed (pre charged). The minimum time
interval between success ive ACTIVATE commands to the same bank is defined by tRC.
A subsequent ACTIVATE command to another bank can be issued while the first bank is
being accessed, which resul ts in a r eduction of total r o w-access o verhead. The minimum
time interval between successive ACTIVATE commands to different banks is defined by
tRRD. No more than four bank ACTIVATE commands may be issued in a given
tFAW (MIN) period, and the tRRD(MIN) restriction still applies. The tFAW (MIN) param-
eter applies, regardless of the number of banks already opened or closed.
Figure 66: Example: Meeting tRRD (MIN) and tRCD (MIN)
Figure 67: Example: tFAW
Command
Dont Care
T1T0 T2 T3 T4 T5 T8 T9
tRRD
Row Row Col
Bank xBank yBank y
NOPACT NOP NOPACT NOP NOP RD/WR
tRCD
BA[2:0]
CK#
Address
CK
T10 T11
NOP NOP
Indicates a Break in
Time Scale
Command
Dont Care
T1T0 T4 T5 T8 T9 T10 T11
tRRD
Row Row
Bank aBank b
Row
Bank c
Row
Bank dBank y
Row
Bank y
NOPACT NOPACTACT NOP NOP
tFAW
BA[2:0]
CK#
Address
CK
T19 T20
NOPACTACT
Bank e
Indicates a Break in
Time Scale
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 131 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
READ
READ bursts are initiated with a READ command. The starting column and bank
addresses are provided with the READ command and auto precharge is either enabled
or disabled for that burst access. If auto precharge is enabled, the row being accesse d is
automatically precharged at the completion of the burst. If auto precharge is disabled,
the row will be left open after the completion of the burst.
During READ bursts, the valid data-out element from the starting column address is
available REA D latency (RL) clocks later. RL is defined as the sum of POSTED CAS ADDI-
TIVE latency (AL) and CAS latency (CL) (RL = AL + CL). The value of AL and CL is
programmable in the mode register via the MRS command. Each subsequent data-out
element will be v a lid nominally at the next positive or negative clock edge (that is, at the
next crossing of CK and CK#). F igur e68 sho ws an example of RL based on a CL setting of
8 and an AL setting of 0.
Figure 68: READ Latency
Notes: 1. DO n = data-out from column n.
2. Subsequent element s of data-out appear in the programmed order following DO n.
DQS, DQS# is driven b y the DRAM along with the output data. The initial low state on
DQS and HIGH state on DQS# is known as the READ pr eamble (tRPRE). The low state on
DQS and the HIGH state on DQS#, coincident with the last data-out element, is known
as the READ postamble (tRPST). Upon completion of a burst, assuming no other
commands have been initiated, the DQ will go High-Z. A detailed explanation of tDQSQ
(valid data-out skew), tQH (data-out window hold), and the valid data window are
depicted in Figure79 on page 139. A detailed explanation of tDQSCK (DQS transition
skew to CK) is also depicted in Figure 79 on page 139.
Data from any READ burst may be concatenated with data from a subsequent READ
command to provide a continuous flow of data. The first data element from the new
burst follo ws the last element of a completed burst. The new READ command should be
issued tCCD cycles after the first READ command. This is shown for BL8 in Figure69 on
page 133. If BC4 is enabled, tCCD mu st still be met which will cause a gap in the data
output, as shown in Figure 70 on page 133. Nonconsecutive read data is reflected in
Figure 71 on page 134. DDR3 SDRAM do not allow interrupting or truncating any READ
burst.
CK
CK#
CommandREAD NOP NOP NOP NOP NOP NOP NOP
Address Bank a,
Col n
CL = 8, AL = 0
DQ
DQS, DQS#
DO
n
T0 T7 T8 T9 T10 T11
Dont Care
Transitioning Data
T12 T12
Indicates a Break in
Time Scale
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 132 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Data from any READ burst must be completed before a subsequent WRITE burst is
allowed. An example of a READ burst followed by a WRITE burst for BL8 is shown in
Figur e 72 on page 134 (BC4 is sho wn in Figur e 73 on page 135). To ensure the read data is
completed before the write data is on the bus, the minimum READ-to-WRITE timing is
RL + tCCD - WL + 2tCK.
A READ burst may be followed by a PRECHARGE command to the same bank provided
auto precharge is not activated. The minimum READ-to-PRECHARGE command
spacing to the same bank is four clocks and must also satisfy a minimum analog time
from the READ command. This time is called tRTP (READ-to-PRECHARGE). tRTP starts
AL cycles later than the READ com mand. Examples for BL8 are show n in Figure 74 on
page 135 and BC4 in Figure 75 on page 136. Following the PRECHARGE command, a
subsequent command to the same bank cannot be issued until tRP is met. The
PRECHAR GE command followed by another PRECHARG E command to the same bank
is allowed. However, the precharge period will be determined by the last PRECHARGE
command issued to the bank.
If A10 is HIGH when a READ command is issued, the READ with auto precharge function
is engaged. The DRAM starts an auto pre charge ope ration on the rising edge whi ch is AL
+ tRTP cycles after the READ command. DRAM support a tRAS lockout feature (see
Figure 77 on page 136). If tRAS (MIN) is not satisfied at the edge, the starting point of the
auto precharge operation will be delayed until tRAS (MIN) is satisfied. If tRTP (MIN) is
not satisfied at the edge, the starting point of the auto precharge oper ation will be
delayed until tRTP (MIN) is satisfied. In case the internal precharge is pushed out by
tRTP, tRP starts at the point at which the internal precharge happens (not at the next
rising cloc k edge after this event). The time from READ with auto precharge to the next
ACTIVATE command to the same bank is AL + (tRTP + tRP)*, where “*” means rounded
up to the next integer. In any event, internal precharge does not start earlier than four
clocks after the last 8n-bit prefetch.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 133 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 69: Consecutive READ Bursts (BL8)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during READ command at T0 and T4.
3. DO n (or b) = data-out from column n (or column b).
4. BL8, RL = 5 (CL = 5, AL = 0).
Figure 70: Consecutive READ Bursts (BC4)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BC4 setting is activated by either MR0[1:0] = 10 or MR0[1:0] = 01 and A12 = 0 during READ command at T0 and T4.
3. DO n (or b) = data-out from column n (or column b).
4. BC4, RL = 5 (CL = 5, AL = 0).
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11
Dont CareTransitioning Data
T12 T13 T14
tRPST
NOPREAD READNOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
DQ
3
DQS, DQS#
Bank,
Col n Bank,
Col b
Address
2
RL = 5
tRPRE
tCCD
RL = 5
DO
n + 3
DO
n + 2
DO
n + 1
DO
nDO
n + 7
DO
n + 6
DO
n + 5
DO
n + 4 DO
b + 3
DO
b + 2
DO
b + 1
DO
bDO
b + 7
DO
b + 6
DO
b + 5
DO
b + 4
NOP
CK
CK#
Command
1
DQ
3
DQS, DQS#
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
Address
2
T10 T11
Dont CareTransitioning Data
T12 T13 T14
READ READ
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
Bank,
Col nBank,
Col b
tRPST
tRPRE tRPSTtRPRE
RL = 5
DO
n + 3
DO
n + 2
DO
n + 1
DO
nDO
b + 3
DO
b + 2
DO
b + 1
DO
b
RL = 5
tCCD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 134 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 71: Nonconsecutive READ Bursts
Notes: 1. AL = 0, RL = 8.
2. DO n (or b) = data-out from column n (or column b).
3. Seven subsequent elements of data-o ut appear in the programmed order followin g DO n.
4. Seven subsequent elements of data-o ut appear in the programmed order followin g DO b.
Figure 72: READ (BL8) to WRITE (BL8)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the READ command at T0, and
the WRITE command at T6.
3. DO n = data-out from column, DI b = data-in for column b.
4. BL8, RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).
Dont CareTransitioning Data
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15 T16T17
DQS, DQS#
CommandNOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOPNOPREAD NOP READ
Address Bank a,
Col nBank a,
Col b
CK
CK#
DQ
DO
nDO
b
CL = 8 CL = 8
Dont CareTransitioning Data
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15
CK
CK#
Command1NOP NOP NOP NOP NOP WRITE NOP NOP NOP NOP NOP NOP NOP NOP NOP
tWPST
tRPRE tWPRE
tRPST
DQS, DQS#
DQ
3
WL = 5
tWR
tWTR
READ
DO
nDO
n + 1 DO
n + 2 DO
n + 3 DO
n + 4 DO
n + 5 DO
n + 6 DO
n + 7 DI
nDI
n + 1 DI
n + 2 DI
n + 3 DI
n + 4 DI
n + 5 DI
n + 6 DI
n + 7
READ-to-WRITE command delay = RL + tCCD + 2tCK - WL tBL = 4 clocks
Address
2
Bank,
Col b
Bank,
Col n
RL = 5
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 135 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 73: READ (BC4) to WRITE (BC4) OTF
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BC4 OTF setting is activated by MR0[1:0] and A12 = 0 during READ command at T0 and WRITE command at T4.
3. DO n = data-out from column n; DI n = data-in from column b.
4. BC4, RL = 5 (AL - 0, CL = 5), WL = 5 (AL = 0, CWL = 5).
Figure 74: READ to PRECHARGE (BL8)
Dont CareTransitioning Data
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15
CK
CK#
Address
2
Bank,
Col nBank,
Col b
Command1READ NOP NOP NOP WRITE NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
tWPST
tWPRE
tRPST
DQS, DQS#
DQ
3
WL = 5
READ-to-WRITE command delay = RL + tCCD/2 + 2tCK - WL tWR
tWTR
tBL = 4 clocks
tRPRE
RL = 5
DO
nDO
n + 1 DO
n + 2 DO
n + 3 DI
nDI
n + 1 DI
n + 2 DI
n + 3
tRAS
tRTP
CK
CK#
CommandNOP NOP NOP NOP
Address
DQ
DQS, DQS#
Dont CareTransitioning Data
NOP NOP NOP NOP NOP ACTNOP NOP NOP NOP
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15 T16T17
NOPREAD
Bank a,
Col n
NOP PRE
Bank a,
(or all) Bank a,
Row b
tRP
DO
nDO
n + 1 DO
n + 2 DO
n + 3 DO
n + 4 DO
n + 5 DO
n + 6DO
n + 7
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 136 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 75: READ to PRECHARGE (BC4)
Figure 76: READ to PRECHARGE (AL = 5, CL = 6)
Figure 77: READ with Auto Precharge (AL = 4, CL = 6)
CK
CK#
Dont CareTransitioning Data
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15 T16T17
CommandNOP NOP NOP NOP NOP NOP NOP NOP NOP ACT NOP NOP NOP NOP
NOPREAD NOP PRE
Address Bank a,
Col nBank a,
(or all) Bank a,
Row b
tRP
tRTP
DQS, DQS#
DQ
DO
nDO
n + 1 DO
n + 2 DO
n + 3
tRAS
CK
CK#
CommandNOP NOP NOP NOP
Address
DQ
DQS, DQS#
Dont CareTransitioning Data
NOP NOP NOP NOP NOP
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15
NOPREAD
Bank a,
Col n
NOP PRE
Bank a,
(or all)
ACT
Bank a,
Row b
NOP NOP
tRAS
CL = 6
AL = 5 tRTP tRP
DO
n + 3
DO
n + 2
DO
nDO
n + 1
CK
CK#
CommandNOP NOP NOP NOP
Address
DQ
DQS, DQS#
Dont CareTransitioning Data
NOP NOP NOP NOP NOP
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 Ta0
tRTP (MIN)
NOPREAD NOP
AL = 4
NOP NOP
CL = 6
NOP
tRAS (MIN)
ACT
Indicates A Break in
Time Scale
tRP
Bank a,
Col nBank a,
Row b
DO
nDO
n + 1 DO
n + 2 DO
n + 3
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 137 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
A DQS to DQ output timing is shown in Figure78 on page 138. The DQ transitions
between valid data outputs must be within tDQSQ of the crossing point of DQS, DQS#.
DQS must also maintain a mi nimum HIGH and LO W time of tQSH and tQSL. Prior to the
READ preamble, the DQ balls will either be float ing o r terminated depending on the
status of the ODT signal.
Figure 79 on page 139 shows the strobe-to-clock timing during a READ. The crossing
point DQS, DQS# must transition within ±tDQSCK of the clock crossing point. The data
out has no timing relatio nship to clock , only to DQS, as shown in Figure79 on page 139.
Figure 79 on page 139 also shows the READ preamble and postamble. Normally, both
DQS and DQS# are High-Z to save power (VDDQ). Prior to data output from the DRAM,
DQS is driven LOW and DQS# is HIGH for tRPRE. This is known as the READ preamble.
The READ postamble, tRPST, is one half clock from the last DQS, DQS# transition.
During the READ postamble, DQS is driven LOW and DQS# is HIGH. When complete,
the DQ will either be disabled or wil l continue terminating depending on the state of the
ODT signal. Figure 84 on page 142 demonstrates how to measure tRPST.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 138 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 78: Data Output Timing – tDQSQ and Data Valid Window
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BL8 setting is activated by either MR0[1, 0] = 0, 0 or MR0[0, 1] = 0, 1 and A12 = 1 during READ command at T0.
3. DO n = data-out from column n.
4. BL8, RL = 5 (AL = 0, CL = 5).
5. Output timings are referenced to VDDQ/2 and DLL on and locked.
6. tDQSQ defines the skew between DQS, DQS# to data and does not define DQS, DQS# to clock.
7. Early data transitions may not always happen at the same DQ. Data transitions of a DQ can vary (either early or late)
within a burst.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10
Bank,
Col n
tRPST
NOPREAD NOPNOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
Address
2
tDQSQ
(MAX)
DQS, DQS#
DQ
3
(last data valid)
DQ
3
(first data no longer valid)
All DQ collectively
DO
nDO
n + 3
DO
n + 2
DO
n + 1 DO
n + 7
DO
n + 6
DO
n + 5
DO
n + 4
DO
n + 2
DO
n + 1 DO
n + 7
DO
n + 6
DO
n + 5
DO
n + 4
DO
n + 3
DO
n + 2
DO
n + 1
DO
nDO
n + 7
DO
n + 6
DO
n + 5
DO
nDO
n + 3
tRPRE
Dont CareTransitioning Data
Data validData valid
tQH
tQH
tHZ
(DQ) MAX
DO
n + 4
RL = AL + CL
tDQSQ
(MAX)
tLZ
(DQ) MIN
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 139 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
tHZ and tLZ transitions occur in the same access time as valid data transitions. These
parameters are referenced to a specific vo ltage level which specifies when the devic e
output is no longer driving tHZ (DQS) and tHZ (DQ) or begins drivin g tLZ (DQS),
tLZ (DQ). Figure80 shows a method to calculate the point when the device is no longer
driving tHZ (DQS) and tHZ (DQ) or begins driving tLZ (DQS), tLZ (DQ) by measuring the
signal at two different voltages. The actual voltage measurement points are not critical
as long as the calculation is consistent. The parameters tLZ (DQS), tLZ (DQ), tHZ (DQS),
and tHZ (DQ) are defined as single-ended.
Figure 79: Data Strobe Timing – READs
Figure 80: Method for Calculating tLZ and tHZ
Notes: 1. Within a burst, the rising strobe edge is not necessarily fixed at tDQSCK (MIN) or tDQSCK
(MAX). Instead, the rising strobe edge can vary between tDQSCK (MIN) and tDQSCK (MAX).
2. The DQS high pulse width is defined by tQSH, and the DQS low pulse width is defined by
tQSL. Likewise, tLZ (DQS) MIN and tHZ (DQS) MIN are not tied to tDQSCK (MIN) (early strobe
case) and tLZ (DQS) MAX and tHZ (DQS) MAX are not tied to tDQSCK (MAX) (late strobe
case); however, they tend to track one another.
3. The minimum pulse width of the READ preamble is defined by tRPRE (MIN). The minimum
pulse width of the READ postamble is defined by tRPST (MIN).
RL measured
to this point
DQS, DQS#
early strobe
CK
tDQSCK
(MIN)
tLZ (DQS)
MIN
tHZ (DQS)
MIN
DQS, DQS#
late strobe
tDQSCK
(MAX)
tLZ (DQS)
MAX
tHZ (DQS)
MAX
tDQSCK
(MIN)
tDQSCK
(MIN)
tDQSCK
(MAX)
tDQSCK
(MAX)
tDQSCK
(MAX)
tDQSCK
(MIN)
CK#
tRPRE
tQSH tQSL tQSL
tQSL tQSL
tQSH
tQSH tQSH
Bit 0 Bit 1 Bit 2 Bit 7
tRPRE
Bit 0 Bit 1 Bit 2 Bit 7Bit 6Bit 3 Bit 4 Bit 5
Bit 6Bit 4Bit 3 Bit 5
tRPST
tRPST
T0 T1 T2 T3 T4 T5 T6
tHZ (DQS), tHZ (DQ)
tHZ (DQS), tHZ (DQ) end point = 2 × T1 - T2
VOH - xmV
VTT - xmV
VOL + xmV
VTT + xmV
VOH - 2xmV
VTT - 2xmV
VOL + 2xmV
VTT + 2xmV
tLZ (DQS), tLZ (DQ)
tLZ (DQS), tLZ (DQ) begin point = 2 × T1 - T2
T1
T1
T2
T2
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 140 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 81: tRPRE Timing
Figure 82: tRPST Timing
tRPRE
DQS - DQS#
DQS
DQS#
T1
tRPRE begins
T2
tRPRE ends
CK
CK#
VTT
Resulting differential
signal relevant for
tRPRE specification
tC
tAtB
tD
Single-ended signal provided
as background information
0V
Single-ended signal provided
as background information
VTT
VTT
tRPST
DQS - DQS#
DQS
DQS#
T1
tRPST begins T2
tRPST ends
Resulting differential
signal relevant for
tRPST specification
CK
CK#
VTT
tC
tA
tB
tD
Single-ended signal, provided
as background information
Single-ended signal, provided
as background information
0V
VTT
VTT
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 141 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
WRITE
WRITE bursts are initiated with a WRITE command. The starting column and bank
addre sses are prov ided with the WRITE command, and auto precharge is either enabled
or disabled for that access. If auto pre charge is selected, the row being accessed will be
precharged at the end of the WRITE burst. If auto precharge is not selected, the row will
remain open for subsequent accesses . After a WRITE command has been issued, the
WRITE burst may not be interrupted. For the generic WRITE commands used in
Figure 85 on page 143 through Figure 93 on page 148, auto precharge is disabled.
During WRITE bursts , the first valid data-i n element i s regi ster ed on a rising edge of DQS
following the WR ITE late nc y (WL) cl ocks later and subsequent data elements will be
registered on successive edges of DQS. WRITE latency (WL) is defined as the sum of
POSTED CAS ADDITIVE latency (AL) and CAS WRITE latency (CWL): WL = AL + CWL.
The values of AL and CWL are programmed in the MR0 and MR2 registers, respectively.
Prior to the first valid DQS edge, a full cycle is needed (including a dummy crossover of
DQS, DQS#) and specified as the WRITE preamble shown in Figure85 on page 143. The
half cycle on DQS following the last data-in element is known as the WRITE postamble.
The time between the WRITE command and the first valid edge of DQS is WL clocks
±tDQSS. Figure86 on page 144 through Figure 93 on page 148 show the nominal case
where tDQSS = 0ns; however, Figure85 on page 143 includes tDQSS (MIN) and
tDQSS (MAX) cases.
Data may be masked from completing a WRITE using data mask. The mask occurs on
the DM ball aligned to the write data. I f DM is LOW, the write completes normally. If DM
is HIGH, that bit of data is masked.
Upon completion of a burst, assuming no other commands have been initia ted, the DQ
will remain High-Z, and any additional inp u t data will be ignored.
Data for any WRITE burst may be concatenated with a subsequent WRITE command to
provide a continuous flow of input data. The new WRITE command can be tCCD clocks
following the previous WRITE command. The first data element from the new burst is
applied after the last elemen t of a completed burst. Figures 86 and 87 on page 144 sho w
concatenated bursts. An example of nonconsecutive WRITEs is shown in Figure88 on
page 145.
Data for any WRITE burst may be follow ed by a subsequent READ command after tWTR
has been met (see Figures 89 and 90 on page 146 and Figure91 on page 147).
Data for any WRITE burst may be follow ed by a subsequent PRECHARGE command
providing tWR has been met, as shown in Figur e92 on page 148 and Figure 93 on
page 148.
Both tWTR and tWR starting time may vary depending on the mode register settings
(fixed BC4, BL8 vs. OTF).
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 142 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 83: tWPRE Timing
Figure 84: tWPST Timing
DQS - DQS#
T1
tWPRE begins
T2
tWPRE ends
tWPRE
Resulting differential
signal relevant for
tWPRE specification
0V
CK
CK#
VTT
tWPST
DQS - DQS#
T1
tWPST begins
T2
tWPST ends
Resulting differential
signal relevant for
tWPST specification
0V
CK
CK#
VTT
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 143 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 85: Write Burst
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these
times.
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the
WRITE command at T0.
3. DI n = data-in for column n.
4. BL8, WL = 5 (AL = 0, CWL = 5).
5. tDQSS must be met at each rising clock edge.
6. tWPST is usually depicted as ending at the crossing of DQS, DQS#; however, tWPST actually
ends when DQS no longer drives LOW and DQS# no longer drives HIGH.
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10
Dont Care
Transitioning Data
DI
n + 7
DI
n + 6
DI
n + 5
DI
n + 4
Bank,
Col n
NOP
WRITE NOP
NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
DQ
3
DQS, DQS#
Address
2
tWPST
tWPRE tWPST
tDQSL
DQ
3
DQ
3
tWPST
DQS, DQS#
DQS, DQS#
tDQSL
tWPRE
tDQSS
tDQSS tDSHtDSHtDSHtDSH
tDSS tDSS tDSS tDSS tDSS
tDSS tDSS tDSS tDSS tDSS
tDSHtDSHtDSHtDSH
tDQSL
tDQSHtDQSL
tDQSHtDQSL
tDQSHtDQSHtDQSL
tDQSL
tDQSL
tDQSL
tDQSH
tDQSH
tDQSH
tDQSH
tDQSL
tDQSHtDQSL
tDQSHtDQSH
tDQSL
tDQSHtDQSL
tDQSHtDQSL
tDQSHtDQSH
WL = AL + CWL
tDQSS (MIN)
tDQSS (NOM)
tDQSS (MAX)
tDQSL
tWPRE
DI
n + 3
DI
n + 2
DI
n + 1
DI
n DI
n + 7
DI
n + 6
DI
n + 5
DI
n + 4
DI
n + 3
DI
n + 2
DI
n + 1
DI
n DI
n + 7
DI
n + 6
DI
n + 5
DI
n + 4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 144 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 86: Consecutive WRITE (BL8) to WRITE (BL8)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and A12 = 1 during the WRITE commands at
T0 and T4.
3. DI n (or b) = data-in for column n (or column b).
4. BL8, WL = 5 (AL = 0, CWL = 5).
Figure 87: Consecutive WRITE (BC4) to WRITE (BC4) via MRS or OTF
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. BC4, WL = 5 (AL = 0, CWL = 5).
3. DI n (or b) = data-in for column n (or column b).
4. The BC4 setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0 and T4.
WL = 5
WL = 5
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tCCD
tWPRE
T10 T11
Dont CareTransitioning Data
T12 T13 T14
ValidValid
NOP
WRITE WRITE
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
DQ
3
DQS, DQS#
Address
2
tWPST
tWR
tWTR
tBL = 4 clocks
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
n + 7
DI
n + 6
DI
n + 5
DI
n + 4 DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
WL = 5
WL = 5
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tCCD
tWPRE
T10 T11
Dont CareTransitioning Data
T12 T13 T14
ValidValid
NOP
WRITE WRITENOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
DQ
3
DQS, DQS#
Address
2
tWPST
tWR
tWTR
tWPSTtWPRE
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
b + 3
DI
b + 2
DI
b + 1
DI
b
tBL = 4 clocks
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 145 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 88: Nonconsecutive WRITE to WRITE
Notes: 1. DI n (or b) = data-in for column n (or column b).
2. Seven subsequent elements of data-i n are applied in the programmed order following DO n.
3. Each WRITE comman d may be to any bank.
4. Shown for WL = 7 (CWL = 7, AL = 0).
Figure 89: WRITE (BL8) to READ (BL8)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. tWTR controls the WRITE-to-READ delay to the same device and starts with the first rising clock edge after the last write
data shown at T9.
3. The BL8 setting is activated by either MR0[1:0] = 00 or MR0[1:0] = 01 and MR0[12] = 1 during the WRITE command at T0.
The READ command at Ta0 can be either BC4 or BL8, depending on MR0[1:0] and the A12 status at Ta0.
4. DI n = data-in for column n.
5. RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).
CK
CK#
CommandNOP NOP NOP
Address
DQ
DM
DQS, DQS#
Transitioning Data
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15 T16T17
NOPWRITE NOP WRITE
Valid
Valid
NOP
DI
nDI
n + 1 DI
n + 2 DI
n + 3 DI
n + 4 DI
n + 5 DI
n + 6
Don't Care
DI
n + 7 DI
bDI
b + 1 DI
b + 2 DI
b + 3 DI
b + 4 DI
b + 5 DI
b + 6DI
b + 7
WL = CWL + AL = 7
WL = CWL + AL = 7
WL = 5
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tWPRE
T10 T11
Dont Care
Transitioning Data
Ta0
NOP
WRITE READ
Valid
Valid
NOP NOP NOP NOP NOP NOP NOP NOPNOP NOP
CK
CK#
Command
1
DQ4
DQS, DQS#
Address
3
tWPST
tWTR2
Indicates a Break in
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
n + 7
DI
n + 6
DI
n + 5
DI
n + 4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 146 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 90: WRITE to READ (BC4 Mode Register Setting)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. tWTR controls the WRITE-to-READ delay to the same device and starts with the first rising clock edge after the last write
data shown at T7.
3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0 and the READ command at Ta0.
4. DI n = data-in for column n.
5. BC4 (fixed), WL = 5 (AL = 0, CWL = 5), RL = 5 (AL = 0, CL = 5).
WL = 5
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 Ta0
Dont CareTransitioning Data
NOPWRITE
Valid
READ
Valid
NOP NOP NOP NOP NOP NOP NOPNOP
CK
CK#
Command
1
DQ
4
DQS, DQS#
Address
3
tWPST
tWTR2
tWPRE
Indicates a Break in
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D4.fm - Rev G 2/09 EN 147 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 91: WRITE (BC4 OTF) to READ (BC4 OTF)
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these times.
2. tWTR controls the WRITE-to-READ delay to the same device and starts after tBL.
3. The BC4 OTF setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0 and the READ command
at Tn.
4. DI n = data-in for column n.
5. BC4, RL = 5 (AL = 0, CL = 5), WL = 5 (AL = 0, CWL = 5).
WL = 5 RL = 5
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tWPRE
T10 T11
Dont CareTransitioning Data
Tn
NOPWRITE READ
ValidValid
NOP NOP NOP NOP NOP NOP NOP NOPNOP
CK
CK#
Command
1
DQ
4
DQS, DQS#
Address
3
tWPST
tBL = 4 clocks
NOP
tWTR2
Indicates a Break in
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 148 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 92: WRITE (BL8) to PRECHARGE
Notes: 1. DI n = data-in from column n.
2. Seven subsequent elements of data-i n are applied in the programmed order following
DO n.
3. Shown for WL = 7 (AL = 0, CWL = 7).
Figure 93: WRITE (BC4 Mode Register Setting) to PRECHARGE
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these
times.
2. The write recovery time (tWR) is referenced from the first rising clock edge after the last
write data is shown at T7. tWR specifies the last burst WRITE cycle until the PRECHARGE
command can be issued to the same bank.
3. The fixed BC4 setting is activated by MR0[1:0] = 10 during the WRITE command at T0.
4. DI n = data-in for column n.
5. BC4 (fixed), WL = 5, RL = 5.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 Ta0 Ta1
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
DI
n + 6DI
n + 7
DI
n + 5
DI
n + 4
NOPWRITE
Valid
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE
CK
CK#
Command
DQ BL8
DQS, DQS#
Address
Dont CareTransitioning Data
Indicates a Break in
Time Scale
tWR
WL = AL + CWL
Valid
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 Ta0 Ta1
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
NOPWRITE
Valid
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP PRE
CK
CK#
Command
DQ BC4
DQS, DQS#
Address
Dont CareTransitioning Data
Indicates a Break in
Time Scale
tWR
WL = AL + CWL
Valid
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 149 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 94: WRITE (BC4 OTF) to PRECHARGE
Notes: 1. NOP commands are shown for ease of illustration; other commands may be valid at these
times.
2. The write recovery time (tWR) is referenced from the rising clock edge at T9. tWR specifies
the last burst WRITE cycle until the PRECHARGE comm and can be issued to the same bank.
3. The BC4 setting is activated by MR0[1:0] = 01 and A12 = 0 during the WRITE command at T0.
4. DI n = data-in for column n.
5. BC4 (OTF), WL = 5, RL = 5.
DQ Input Timing
Figure 85 on page 143 shows the strobe to clock timing during a WRITE. DQS, DQS#
must transition within 0.25tCK of the clock transitions as limited by tDQSS. All data and
data mask setup and hold timings are measured relative to the DQS, DQS# crossing, not
the clock cr ossing.
The W RITE preamb le and postamble are also sho wn. O ne clock prior to da ta input to the
DRAM, DQS must be HIGH and DQS# must be LOW. Then for a half clock, DQS is driven
LOW (DQS# is driven HIGH) during the WRITE preamble, tWPRE. Likewise, DQS must
be kept LOW by the controller after the last data is written to the DRAM during the
WRITE postamble, tWPST.
Data setup and hold times are shown in Figure 95 on page 149. All setup and hold times
are measured from the crossing points of DQS and DQS#. These setup and hold values
pertain to data input and data mask input.
Additionally, the half period of the data input strobe is specified by tDQSH and tDQSL.
Figure 95: Data Input Timing
WL = 5
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 Tn
Dont Care Transitioning Data
Bank,
Col n
NOP WRITE PRENOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
1
DQ
4
DQS, DQS#
Address
3
tWPST
tWPRE
Indicates a Break In
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
tWR2
Valid
tDH
tDS
DM
DQ DI
b
DQS, DQS#
Dont CareTransitioning Data
tDQSHtDQSL
tWPRE tWPST
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 150 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
PRECHARGE
Input A10 dete rmines whether one bank or all banks are to be precharged, and in the
case where only one bank is to be precharged, inputs BA[2:0] select the bank.
When all banks are to be precharged, inputs BA[2:0] are treated as “Dont Care.” After a
bank is precharged, it is in the idle state and must be activated prior to any READ or
WRITE commands b ei n g is s ued.
SELF REFRESH
The SELF REFRESH command is init iated like a REFRESH command ex cept CKE is LO W.
The DLL is automatically disabled upon entering self refresh and is automatically
enabled and reset upon exiting self refresh. All power supply inputs (includi ng VREFCA
and VREFDQ) must be maintained at valid le vels upon entry/exit and during self refresh
mode operation. VREFDQ may float or not drive VDDQ/2 while in the self refresh mode
under certain conditions:
•V
SS <VrefDQ < VDD is maintained
•V
REFDQ is valid and stable prior to CKE going back HIGH
The first WRITE operation may not occur earlier than 512 clocks after VREFDQ is valid
All other self refr esh mode exit timing requirements are met
The DRAM must be idle with all banks in the precharge state (tRP is satisfie d and no
bursts are in progress) before a self refresh entry command can be issued. ODT must
also be turned off before self refresh entry by registering the ODT ball LOW prior to the
self refresh entry command (see “On-Die Termination (ODT)” on page 161 for timing
r equ irements). If RTT_NOM and RTT_WR ar e di sabled in the mode registers, ODT can be a
“Dont Care.” After the self refresh entry command is registered, CKE must be held LOW
to keep the DRAM in self refresh mode.
After the DRAM has entered self refresh mode, all external control signals , except CKE
and RESET#, become “Dont Care.” The DRAM initiates a minimum of one REFRESH
command internally within the tCKE period when it enters self refresh mode.
The requirements for entering and exiting self refresh mode depend on the state of the
clock during self refr esh mode. F irst and foremost, the clock must be stable (meeting tCK
specificati o ns ) whe n se lf refresh mode is entered. If the clock remains stable and the
frequency is not altered while in self refresh mode, then the DRAM is allowed to exit self
refresh mode after tCKESR is satisfied (CKE is allowed to transition HIGH tCKESR later
than when CKE was registered LO W). Since the clock remains stable in self refresh mode
(no frequency change), tCKSRE and tCKSRX are not required. Howev er, if the clock is
altered duri ng se lf refresh m ode (tur ned-off or frequency change), then tCKSRE and
tCKSRX must be satisfied. When entering self refresh mode, tCKSRE must be satisfied
prior to altering the clock's fr equency. Prior to exiting self r efr esh mode , tCKSRX must be
satisfied prior to registering CKE HIGH.
When CKE is HIGH during self refresh exit, NOP or DES must be issued for tXS time. tXS
is requir ed for the completion of any internal refresh that is alr eady in progress and must
be satisfied before a valid command not requiring a locked DLL can be issued to the
device. tXS is also the earliest time self refresh reentry may occur (see Figure 96 on
page 151). Before a command requiring a locked DLL can be applied, a ZQCL command
must be issued, tZQOPER timing must be met, and tXSDLL must be satisfied. ODT must
be off during tXSDLL.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 151 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 96: Self Refresh Entry/Exit Timing
Notes: 1. The clock must be valid and stable meeting tCK specificatio ns at least tCKSRE after entering
self refresh mode, and at least tCKSRX prior to exiting self refresh mode, if the clock is
stopped or altered between states Ta0 and Tb0. If the clock remains valid and unchanged
from entry and during self refresh mode, then tCKSRE and tCKSRX do not apply; however,
tCKESR must be satisfied prior to exiting at SRX.
2. ODT must be disabled and RTT off prior to entering self refresh at state T1. If both RTT_NOM
and RTT_WR are disabled in the mode registers, ODT can be a “Don’t Care.”
3. Self refresh entry (SRE) is synchronous via a REFRESH command with CKE LOW.
4. A NOP or DES command is required at T2 after the SRE command is issued prior to the
inputs becoming “Don’t Care.”
5. NOP or DES commands are required prior to exiting self refresh mode until state Te 0.
6. tXS is required before any commands not requiring a locked DLL.
7. tXSDLL is required before any commands requiring a locked DLL.
8. The device must be in the all banks idle state prior to entering self refresh mode. For exam-
ple, all banks must be precharged, tRP must be met, and no data bursts can be in progress.
9. Self refresh exit is asynchronous; however, tXS and tXSDLL timings start at the first rising
clock edge where CKE HIGH satisfies tISXR at Tc1. tCKSRX timing is also measured so that
tISXR is satisfied at Tc1.
CK
CK#
CommandNOP NOP4
SRE (REF)3
Address
CKE
ODT2
RESET#2
Valid
Valid6
SRX (NOP) NOP5
tRP
8
tXS6, 9
tXSDLL
7, 9
ODTL
tIS
tCPDED
tIS
tIS
Enter self refresh mode
(synchronous) Exit self refresh mode
(asynchronous)
T0 T1 T2 Tc0Tc1Td0Tb0
Dont Care
Te0
Valid
Valid7
Valid
ValidValid
tIH
Ta0 Tf0
Indicates a Break in
Time Scale
tCKSRX1
tCKSRE1
tCKESR (MIN)1
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 152 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Extended Temperature Usage
Microns DDR3 SDRAM support the optional extended temperatur e range of 0°C to 95°C,
TC. Thus, the SRT and ASR options must be used at a minimum.
The extended temperature range DRAM must be refreshed externally at 2X (double
refres h) anytime the case temperature is above 85°C (and does not exceed 95°C). The
external refreshing requirement is accomplished by reducing the refresh period from
64ms to 32ms. However, self refresh mode requires either ASR or SRT to support the
extended temperature. Thus either ASR or SR T must be enabled when TC is above 85°C
or self r efresh cannot be used until the case temperatur e is at or bel ow 85°C. Table72
summarizes the two extended temperature options and Table 73 summarizes how the
two extended temperature options relate to one another.
Table 72: Self Refresh Temperature and Auto Self Refresh Description
Field MR2 Bits Description
Self Refresh Temperature (SRT)
SRT 7 If ASR is disabled (MR2[6] = 0), SRT must be programmed to indicate TOPER during self refresh:
*MR2[7] = 0: Normal operating temperature range (0°C to 85°C)
*MR2[7] = 1: Extended operating temperature range (0°C to 95°C)
If ASR is enabled (MR2[7] = 1), SRT must be set to 0, even if the extended temperature range is
supported
*MR2[7] = 0: SRT is disabled
Auto Self Refresh (ASR)
ASR 6 When ASR is enabled, the DRAM automatically provides SELF REFRESH power management
functions, (refresh rate for all supported operating temperature values)
* MR2[6] = 1: ASR is enabled (M7 must = 0)
When ASR is not enabled, the SRT bit mu st be programmed to indicate TOPER during SELF REFRESH
operation
* MR2[6] = 0: ASR is disabled, must use manual self refresh temperature (SRT)
Table 73: Self Refresh Mode Summary
MR2[6]
(ASR) MR2[7]
(SRT) SELF REFRESH Operation Permitted Operating Temperature
Range for Self Refresh Mode
0 0 Self refre sh mode is supported in the normal temperature range Normal (0°C to 85°C)
0 1 Self refresh mode is supported in normal and extended
temperature ranges; When SRT is enabled, it increases self
refresh power consumption
Normal and extended (0°C to 95°C)
1 0 Self refresh mode is supported in normal and extended
temperature ranges; Self refresh power consumption may be
temperature-dependent
Normal and extended (0°C to 95°C)
1 1 Illegal
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 153 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Power-Down Mode
P ower-down is synchronously entered when CKE is registered LOW coincident with a
NOP or DES command. CKE is not allowed to go LOW while either an MRS, MPR,
ZQCAL, R EAD, or WRITE operation is in progress. CKE is allo w ed to go LOW while any of
the other legal operatio ns (such as ROW ACTIVATION, PRECH ARGE, auto precharge, or
REFRESH) are in progress. However, the power-d own IDD specifications are not appli-
cable until such operations have been comp le te d. Depending on the previous DRAM
state and the command issued prior to CKE goin g LOW, certain timing constraints must
be satisfied (as note d in Table 74). Timing diagrams detailing the different power- down
mode entry and exits are shown in Figure97 on page 154 through Figure 106 on
page 159.
Notes: 1. If slow-exit mode precharge power-do wn is enabled and entered, ODT becomes asynchro-
nous tANPD prior to CKE going LOW and remains asyn ch ron ous u ntil tANPD + tXPDLL after
CKE goes HIGH.
Entering power-down disables the input and output buffers, excludi ng CK, CK#, ODT,
CKE, and RESET#. NOP or DES commands are r equired until tCPDED has been sati sfied,
at which time all specified input/output buffers will be disabled. The DLL should be in a
locked state when power-down is entered for the fastest power-down exit timing. If the
DLL is not locked during power-down entry, the DLL must be reset after exiting power-
down mode for proper READ operation as well as synchronous ODT operation.
During power-do wn entry, if any bank r emains open after all in-progr ess commands are
complete, the DRAM will be in active power-down mode. If all banks are closed after all
in-progr ess commands are complete , the DRAM wil l be in pr echarge po wer -do wn mode .
Precharge power-down mode must be programmed to exit with either a slow exit mode
or a fast exit mode . When entering pr echarge po w er-do wn mode , the DLL is turned off in
slow exit mode or kept on in fast exit mode.
The DLL remains on when entering active power-down as well. ODT has special timing
constraints when slow exit mode precharge power-down is enabled and entered. Refer
to “Asynchronous ODT Mode” on page 173 for detailed ODT usage requi rements in slo w
exit mode precharge pow er-down. A summary of the two power-down modes is l isted in
Table 75 on page 154.
Table 74: Command to Power-Down Entry Parameters
DRAM Status Last Command Prior to
CKE LOW1Parameter (Min) Parameter Value Figure
Idle or active ACTIVATE tACTPDEN 1tCK Figure 104 on page 158
Idle or active PRECHARGE tPRPDEN 1tCK Figure 105 on page 158
Active READ or READAP tRDPDEN RL + 4tCK + 1tCK Figure 100 on page 156
Active WRITE: BL8OTF, BL8MRS,
BC4OTF
tWRPDEN WL + 4tCK + tWR/tCK Figure 101 on page 156
Active WRITE: BC4MRS WL + 2tCK + tWR/tCK Figure 101 on page 156
Active WRITEAP: BL8OTF, BL8MRS,
BC4OTF
tWRAPDEN WL + 4tCK + WR + 1tCK Figure 102 on page 157
Active WRITEAP: BC4MRS WL + 2tCK + WR + 1tCK Figure 102 on page 157
Idle REFRESH tREFPDEN 1tCK Figure 103 on page 157
Power-down REFRESH tXPDLL Greater of 10tCK or 24ns Figure 107 on page 159
Idle MODE REGISTER SET tMRSPDEN tMOD Figure 106 on page 159
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 154 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
While in either pow er-down state, CKE is held LOW, RESET# is held HIGH, and a stable
clock signal must be maintained . ODT mus t be in a valid state but all other input signals
are a Dont Care .” If RESET# goes LO W duri ng po we r-down, the DRAM will switch ou t of
power-down mode and go into the reset state. After CKE is registered LOW, CKE must
re main LOW unti l tPD (MIN) has been satisfied. The maximum time allowed for power-
down duration is tPD (MAX) (9 × tREFI).
The po wer- down states ar e synchronously exited when CKE is registered HIGH (with a
requir ed NOP or DES command). CKE must be maintained HIGH until tCKE has been
satisfied. A valid, executable command may be applied after po wer-down exit latency,
tXP tXPDLL have been satisfied. A summary of the power-down modes is listed in
Table 75.
For certain CKE-intensive operations, for example, repeating a power-down exit to
refr esh to power -down entry sequence, the number of clock cycles between power -down
exit and power-do wn entry may not be sufficient enough to keep the DLL properly
updated. In addition to meeting tPD when the REFRESH command is used in between
power-down exi t and powe r-down entry, tw o other conditions must be met. First, tXP
must be satisfied be fore issuing the REFRESH command. Second, tXPDLL must be satis-
fied before the next powe r-down may be entered. An example is shown in Figure 107 on
page 159.
Figure 97: Active Power-Down Entry and Exit
Table 75: Power-Down Modes
DRAM State MR1[12] DLL State Power-Down
Exit Relevant Parameters
Active (any bank open) “Don’t
Care” On Fast tXP to any other valid command
Precharged
(all banks precharged) 1OnFast
tXP to any other valid command
0OffSlow
tXPDLL to commands that require the DLL to be locked
(READ, RDAP, or ODT on)
tXP to any other valid command
CK
CK#
Command NOP NOP NOP NOP
Address
CKE
tCK tCH tCL
Enter power-down
mode Exit power-down
mode
Don’t Care
ValidValid
Valid
tCPDED
Valid
tIS
tIH
tIH
tIS
T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4
NOP
tXP
tCKE (MIN)
Indicates a Break in
Time Scale
tPD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 155 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 98: Precharge Power-Down (Fast-Exit Mode) Entry and Exit
Figure 99: Precharge Power- Down (Slow-Exit Mode) Entry and Exit
Notes: 1. Any valid command not requiring a locked DLL.
2. Any valid command requiring a locked DLL.
tCKEmin
tCKEmin
CK
CK#
Command NOP NOP NOP NOP
CKE
tCK tCH tCL
Enter power-down
mode Exit power-down
mode
tPD
Valid
tCPDED
tIS
tIH
tIS
T0 T1 T2 T3 T4 T5 Ta0 Ta1
NOP
Don’t Care
Indicates a Break in
Time Scale
tCKE (MIN)
tXP
CK
CK#
Command NOP NOP NOP
CKE
tCK tCH tCL
Enter power-down
mode Exit power-down
mode
tPD
Valid2
Valid1
PRE
tXPDLL
tCPDED
tIS
tIH
tIS
T0 T1 T2 T3 T4 Ta Ta1 Tb
NOP
Don’t Care
Indicates a Break in
Time Scale
tXP
tCKE (MIN)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 156 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 100: Power-Down Entry After READ or READ with Auto Precharge (RDAP)
Figure 101: Power-Down Entry After WRITE
Notes: 1. CKE can go LOW 2tCK earlier if BC4MRS.
T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6Ta7 Ta8 Ta9
Dont CareTransitioning Data
Ta10 Ta11 Ta12
NOP
Valid
READ/
RDAP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
DQ BL8
DQ BC4
DQS, DQS#
Address
CKE
tCPDED
tIS
tPD
Power-down or
self refresh entry
Indicates a Break In
Time Scale
tRDPDEN
DI
n + 3
DI
n + 1 DI
n + 2
DI
n
RL = AL + CL
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
n + 6DI
n + 7
DI
n+ 5
DI
n + 4
T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6Ta7 Tb0Tb1 Tb2Tb3Tb4
NOPWRITE
Valid
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
DQ BL8
DQ BC4
DQS, DQS#
Address
CKE
tCPDED
Power-down or
self refresh entry1
Dont CareTransitioning Data
tWRPDEN
DI
n + 3
DI
n + 1 DI
n + 2
DI
n
tPD
Indicates A Break in
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
n + 6DI
n + 7
DI
n + 5
DI
n + 4
tIS
WL = AL + CWL tWR
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 157 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 102: Power-Down Entry After WRITE with Auto Precharge (WRAP)
Notes: 1. tWR is programmed through MR0[11:9 ] and rep resen ts tWR (MIN)ns/tCK rounded up to the
next integer tCK.
2. CKE can go LOW 2tCK earlier if BC4MRS.
Figure 103: REFRESH to Power-Down Entry
Notes: 1. After CKE goes HIGH during tRFC, CKE must remain HIGH until tRFC is satisfied.
T0 T1 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6Ta7 Tb0Tb1
Dont CareTransitioning Data
Tb2 Tb3 Tb4
NOPWRAP
Valid
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
CK
CK#
Command
DQ BL8
DQ BC4
DQS, DQS#
Address
A10
CKE
tPD
tWRAPDEN
Power-down or
self refresh entry2
Start internal
precharge
tCPDED
tIS
Indicates a Break in
Time Scale
DI
n + 3
DI
n + 2
DI
n + 1
DI
nDI
n + 6DI
n + 7
DI
n + 5
DI
n + 4
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
WR1
WL = AL + CWL
CK
CK#
Command REFRESH NOP NOP NOP NOP Valid
CKE
tCK tCH tCL
tCPDED
tREFPDEN
tIS
T0 T1 T2 T3 Ta0 Ta1 Ta2 Tb0
tXP (MIN)
tRFC (MIN)1
Don’t Care
Indicates a Break In
Time Scale
tCKE (MIN)
tPD
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 158 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 104: ACTIVATE to Power-Down Entry
Figure 105: PRECHARGE to Power-Down Entry
tCKE
CK
CK#
Command
Address
ACTIVE NOP NOP
CKE
tCK tCH tCL
Don’t Care
tCPDED
tACTPDEN
Valid
tIS
T0 T1 T2 T3 T4 T5 T6 T7
tPD
CK
CK#
Command
Address
CKE
tCK tCH tCL
Don’t Care
tCPDED
tPREPDEN
tIS
T0 T1 T2 T3 T4 T5 T6 T7
tPD
All/single
bank
PRE NOP NOP
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 159 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 106: MRS Command to Power-Down Entry
Figure 107: Power-Down Exit to Refresh to Power-Down Entry
Notes: 1. tXP must be satisfied before issuing the command.
2. tXPDLL must be satisfied (referenced to the registration of power-down exit) before the
next power-down can be entered.
RESET
The RESET signal (RESET#) is an asynchronous signal that triggers any time it drops
LOW, and there are no restrictions about when it can go LOW. After RESET# goes LOW, it
must remain LO W for 100ns. During this time, the outputs are disabled, ODT (RTT) turns
off (High-Z), and the DRAM resets itself. CKE should be brought LOW prior to RESET#
being driven HIGH. After RESET# goes HIGH, the DRAM must be reinitialized as though
a normal power up were executed (see Figure 108 on page 160). All refresh counters on
the DRAM are r eset, and data stor ed in the DRAM is assumed unkno wn after RESET# has
gone LOW.
CK
CK#
CKE
tCK tCH tCL tCPDED
Address
tIS
T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4
tPD
Don’t Care
Indicates a Break in
Time Scale
Valid
Command MRS NOPNOP NOP NOP NOP
tMRSPDEN
CK
CK#
CKE
tCK tCH tCL
Enter power-down
mode Enter power-down
mode
Exit power-down
mode
tPD
tCPDED
tIS
tIH
tIS
T0 T1 T2 T3 T4 Ta0 Ta1 Tb0
Don’t Care
Indicates a Break in
Time Scale
Command NOP NOP NOP NOPREFRESH NOPNOP
tXP1
tXPDLL2
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D4.fm - Rev G 2/09 EN 160 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
Operations
Figure 108: RESET Sequence
CKE
R
TT
BA[2:0]
All voltage
supplies valid
and stable
High-Z
DM
DQS High-Z
Address
A10
CK
CK#
tCL
Command NOP
T0 Ta0
Dont Care
tCL
tIS
ODT
DQ High-Z
Tb0
tDLLK
MR1 with
DLL ENABLE
MRS MRS
BA0 = H
BA1 = L
BA2 = L
BA0 = L
BA1 = L
BA2 = L
Code Code
Code Code
Valid
Valid
Valid
Valid
Normal
operation
MR2 MR3
MRS MRS
BA0 = L
BA1 = H
BA2 = L
BA0 = H
BA1 = H
BA2 = L
Code Code
Code Code
Tc0 Td0
RESET#
Stable and
valid clock
Valid Valid
DRAM ready
for external
commands
T1
tZQINIT
A10 = H
ZQCL
tIS
tIOZ
Valid
Valid
Valid
System RESET
(warm boot)
ZQ CAL
MR0 with
DLL RESET
T=10ns (MIN)
T = 100ns (MIN)
Indicates a Break in
Time Scale
T = 500µs (MIN) tXPR tMRD tMRD tMRD tMOD
T (MIN) =
MAX (10ns, 5tCK)
tCK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 161 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
On-Die Termination (ODT)
ODT is a feature that enables the DRAM to enable/disable and turn on/off termination
resi stance for each DQ, DQS, DQS#, and DM for the x4 and x8 configurations (and
TDQS, TDQS# for the x8 configuration, when enabled). ODT is applied to each DQ,
UDQS, UDQS#, LDQS, LDQS#, UDM, and LDM signal for the x16 configuration.
The ODT feature is designed to improve signal integr ity of the memory channel by
enabling the DRAM controller to independently turn on/off the DRAM’s internal termi-
nation resistance for any grouping of DRAM devices. The ODT feature is not supported
during DLL disable mode. A simple functional representation of the DRA M ODT feature
is shown in Figure 109. Th e switch is enabled by the internal ODT control logic, which
uses the external ODT ball and other control information.
Figure 109: On-Die Termination
Functional Representation of ODT
The value of RTT (ODT termination value) is determined by the settings of several mode
register bits (see Table 79 on page 164). The ODT ball is ignored while in self refresh
mode (must be turned off prior to self refresh entry) or if mode registers MR1 and MR2
are programmed to disable ODT. ODT is comprised of nominal ODT and dynamic ODT
modes and either of these can function in synchronous or asynchronous mode (when
the DLL is off during precharge power-down or when the DLL is synchronizing).
Nominal ODT is the base termination and is used in any allowable ODT state. Dynamic
ODT is applied only during writes and provides OTF switching from no RTT or RTT_NOM
to RTT_WR.
The actual effective te rmination, R TT_EFF, may be different from the RTT targeted due to
nonlinearity of the termination. For RTT_EFF values and calculations, see “ODT Charac-
teristics” on page 52.
Nominal ODT
ODT (NOM) is the base termination resistance for each applicable ball, it is ena bl ed or
disabled via MR1[9, 6, 2] (see Figure 55 on page 115), and it is turned on or off via the
ODT ball (see Table 76 on page 162).
ODT V
DD
Q/2
R
TT
SwitchDQ, DQS, DQS#,
DM, TDQS, TDQS#
To other
circuitry
such as
RCV,
. . .
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 162 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Notes: 1. Assumes dynamic ODT is disabled (see “Dynamic ODT” on page 163 when enabled).
2. ODT is enabled and active during most writes for proper termination, but it is not illegal to
have it off during writes.
3. ODT must be disabled during reads. The RTT_NOM value is restricted during writes. Dynamic
ODT is applicable if enabled.
Nominal ODT r esi stance RTT_NOM is defined by MR1[9, 6, 2], as shown in Figure 55 on
page 115. The RTT_NOM termination value applies to the output pins previously
mentioned. DDR3 SDRAM supports multiple RTT_NOM values based on RZQ/n where n
can be 2, 4, 6, 8, or 12 and RZQ is 240Ω. RTT_NOM termination is allowed any time after
the DRAM is initialized, calibrated, and not performing read access or when it is not in
self re fresh mode.
Wri te ac cesses use RTT_NOM if dynamic ODT (RTT_WR) is disabled. If RTT_NOM is used
during writes, only RZQ/2, RZQ/4, and RZQ/6 are allowed (see Table 79 on page 164).
ODT timings are summarized in Table 77, as well as listed in Table 54 on page 70.
Examples of nominal ODT timing are sho wn in conjunction with the synchronous mode
of operation in “Synchronous ODT Mode” on page 168.
Table 76: Truth Table – ODT (Nominal)
Note 1 applies to the entire table
MR1[9, 6, 2] ODT Pin DRAM Termination State DRAM State Notes
000 0 RTT_NOM disabled, ODT off A ny valid 2
000 1 RTT_NOM disabled, ODT on Any valid except self refresh, read 3
000–101 0 RTT_NOM enabled, ODT off Any valid 2
000–101 1 RTT_NOM enable d, ODT on A ny va lid except self refresh, read 3
110 and 111 X RTT_NOM reserved, ODT on or off Illegal
Table 77: ODT Parameter
Symbol Description Begins at Defined to Definition for All
DDR3 Speed Bins Units
ODTL on ODT synchron ous turn on delay ODT re gistered HIGH RTT_ON ±tAON CWL+AL-2 tCK
ODTL off ODT sync hronous turn off delay ODT registered HIGH RTT_OFF ±tAOF CWL+AL-2 tCK
tAONPD ODT asynchronous turn on delay ODT re gistered HIGH RTT_ON 1–9 ns
tAOFPD ODT asynchronous turn off delay ODT registered HIGH RTT_OFF 1–9 ns
ODTH4 ODT minimum HIGH time after ODT
assertion or write (BC4) ODT registered HIGH
or write registration
with ODT HIGH
ODT registered
LOW 4tCK tCK
ODTH8 ODT minimum HIGH time after
write (BL8) Write registration
with ODT HIGH ODT registered
LOW 6tCK tCK
tAON ODT turn-on re lative to ODTL on
completion Completion of
ODTL on RTT_ON See Table 54 on
page 70 ps
tAOF ODT turn-off relative to ODTL off
completion Completion of
ODTL off RTT_OFF 0.5tCK ±0.2tCK tCK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 163 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Dynamic ODT
In certain application cases, and to further enhance signal integrity on the data bus, it is
desirable that the termination strength of the DDR3SDRAM can be changed without
issuing an MRS command, esse ntially changing the ODT termination on the fly. With
dynamic ODT (RTT_WR) enabled, the DRAM switches from nominal ODT (RTT_NOM) to
dynamic ODT (RTT_WR) when beginning a WRITE burst and subsequently switches back
to nominal ODT (RTT_NOM) at the completion of the WRITE burst. This requirement is
supported by the dynamic ODT feature, as described below:
Functional Description
The dynamic ODT mode is enabled if either MR2[9] or MR2[10] is set to “1.” Dynamic
ODT is not supported during DLL disable mode so RTT_WR must be disabled. The
dynamic ODT function is described, as follows:
•Two R
TT values are available—RTT_NOM and RTT_WR:
–The value for R
TT_NOM is preselected via MR1[9, 6, 2]
–The value for R
TT_WR is preselected via MR2[10, 9]
During DRAM operation without READ or WRITE commands, the termination is
controlled as follows:
Nominal termination strength RTT_NOM is used
Termination on/off timing is controlled via the ODT ball and latencies ODTL on
and ODTL off
When a WRITE command (WR, WRAP, WRS4, WR S8, WRAPS4, WRAPS8) is register ed,
and if dynamic ODT is enabled, the ODT termination is controlled as follows:
–A latency of ODTL
CNW after the WRITE command: termination strength RTT_NOM
switches to RTT_WR
–A latency of ODTLCWN8 (for BL8, fixed or OTF) or ODTLCWN4 (for BC4, fixed or
OTF) after the WRITE command: termination strength RTT_WR switches back to
RTT_NOM
On/off termination timing is controlled via the ODT ball and determined by ODTL
on, ODTL off, ODTH4, and ODTH8
–During the tADC transition window, the value of RTT is undefined
ODT is constrained during write s and when dynamic ODT is enabled (see Table 78).
ODT timings listed in Table 77 on page 162 also apply to dynamic ODT mode.
Table 78: Dynamic ODT Specific Parameters
Symbol Description Begins at Defined to Definition for All
DDR3 Speed Bins Units
ODTLCNW Change from RTT_NOM to
RTT_WR Write registration RTT switched from
RTT_NOM to RTT_WR WL - 2 tCK
ODTLCWN4 Change from RTT_WR to
RTT_NOM (BC4) Write registration RTT switched from RTT_WR
to RTT_NOM 4tCK + ODTL off tCK
ODTLCWN8 Change from RTT_WR to
RTT_NOM (BL8) Write registration RTT switched from RTT_WR
to RTT_NOM 6tCK + ODTL off tCK
tADC RTT change skew ODTLCNW completed RTT transition complete 0.5tCK ±0.2tCK tCK
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 164 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Notes: 1. RZQ = 240Ω. If RTT_NOM is used during WRITEs, only RZQ/2, RZQ/4, RZQ/6 are allowed.
Ta ble 79: Mode Registers for RTT_NOM
MR1 (RTT_NOM)RTT_NOM
(RZQ) RTT_NOM
(Ohms) RTT_NOM
Mode RestrictionM9 M6 M2
000 Off Off n/a
0 0 1 RZQ/4 60 Self refresh
0 1 0 RZQ/2 120
0 1 1 RZQ/6 40
100 RZQ/12 20 Self refresh, write
1 0 1 RZQ/8 30
1 1 0 Reserved Reserved n/a
1 1 1 Reserved Reserved n/a
Ta ble 80: Mode Registers for RTT_WR
MR2 (RTT_WR)RTT_WR
(RZQ) RTT_WR
(Ohms)M10 M9
0 0 Dynamic ODT off: WRITE does not affect RTT_NOM
01 RZQ/4 60
10 RZQ/2 120
1 1 Reserved Reserved
n/a n/a n/a n/a
n/a n/a n/a n/a
n/a n/a n/a n/a
n/a n/a n/a n/a
Table 81: Timing Diagrams for Dynamic ODT
Figure and Page Title
Figure 110 on page 165 Dynamic ODT: ODT Asserted Before and After the WRITE, BC4
Figure 111 on page 165 Dynamic ODT: Without WRITE Command
Figure 112 on page 166 Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8
Figure 113 on page 167 Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Cl ock Cyc les, BC4
Figure 114 on page 167 Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Cl ock Cyc les, BC4
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 165 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 110: Dynamic ODT: ODT Asserted Before and After the WRITE, BC4
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM and RTT_WR are enabled.
2. ODTH4 applies to first registering ODT H IGH and then to the registration of the WRITE command. In this example,
ODTH4 is satisfied if ODT goes LOW at T8 (four clocks after the WRITE command).
Figure 111: Dynamic ODT: Without WRITE Command
Notes: 1. AL = 0, CWL = 5. RTT_NOM is enabled and RTT_WR is either enabled or disabled .
2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW; in this example, ODTH4 is satisfied. ODT registered
LOW at T5 is also legal.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
ODTL on ODTLCWN4
ODTLCNW
WL
ODTL off
T10 T11 T12 T13 T14 T15 T17
T16
CK
CK#
Command
Address
R
TT
ODT
DQ
DQS, DQS#
Valid
WRS4NOP NOP NOP NOP NOP NOP NOP
Dont CareTransitioning
R
TT
_
WR
R
TT
_
NOM
R
TT
_
NOM
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
NOP NOP NOP NOP NOP NOP NOP NOPNOP NOP
ODTH4 ODTH4
tAON (MIN) tADC (MIN) tADC (MIN) tAOF (MIN)
tAON (MAX) tADC (MAX) tADC (MAX) tAOF (MAX)
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
ODTL off
T10 T11
CK
CK#
RTT
Dont CareTransitioning
Command
ValidValidValidValidValidValidValidValidValidValidValidValid
Address
DQS, DQS#
DQ
ODTH4
ODTL on
tAON (MAX)
tAON (MIN)
tAOF (MIN)
tAOF (MAX)
ODT
RTT_NOM
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 166 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 112: Dynamic ODT: ODT Pin Asserted Together with WRITE Command for 6 Clock Cycles, BL8
Notes: 1. Via MRS or OTF; AL = 0, CWL = 5. If RTT_NOM can be either enabled or disabled, ODT can be HIGH. RTT_WR is enabled.
2. In this example, ODTH8 = 6 is satisfied exactly.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
ODTL
CWN
8
ODTL
ON
ODTL
CNW
WL
tAOF (MAX)
T10 T11
CK
CK#
Address
R
TT
ODT
DQ
DQS, DQS#
DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
Valid
Dont CareTransitioning
CommandWRS8NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP
R
TT
_
WR
ODTH8 ODTL
OFF
tADC (MAX)
tAON (MIN)
tAOF (MIN)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 167 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 113: Dynamic ODT: ODT Pin Asserted with WRITE Command for 6 Clock Cycles, BC4
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM and RTT_WR are enabled.
2. ODTH4 is defined from ODT registered HIGH to ODT registered LOW, so in this example,
ODTH4 is satisfied. ODT registered LOW at T5 is also legal.
Figure 114: Dynamic ODT: ODT Pin Asserted with WRITE Command for 4 Clock Cycles, BC4
Notes: 1. Via MRS or OTF. AL = 0, CWL = 5. RTT_NOM can be either enabled or disabled. If disabled,
ODT can remain HIGH. RTT_WR is enabled.
2. In this example ODTH4 = 4 is satisfied exactly.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
ODTL on
ODTL
CNW
WL
T10 T11
CK
CK#
ODTL
CWN
4
DQS, DQS#
Address Valid
Dont CareTransitioning
ODTL off
CommandWRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP
DQ
DI
n + 3
DI
n + 2
DI
n + 1
DI
n
tADC (MIN) tAOF (MIN)
tAOF (MAX)
tADC (MAX)
tADC (MAX)
tAON (MIN)
ODTH4
ODT
R
TT
R
TT
_
WR
R
TT
_
NOM
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
ODTL on
ODTL
CNW
WL
T10 T11
CK
CK#
ODTL
CWN
4
DQS, DQS#
Address Valid
RTT_WR
CommandWRS4NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP
Dont CareTransitioning
DQ DI
nDI
n + 3
DI
n + 2
DI
n + 1
ODTH4
tADC (MAX)
tAON (MIN)
tAOF (MIN)
tAOF (MAX)
ODTL off
RTT
R
TT
_
WR
ODT
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 168 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Synchro nous ODT Mode
S y nchronous ODT mode is selected whenever the DLL is turne d on and locked and
when either RTT_NOM or RTT_WR is enabled . Based on the po wer-down definition, these
modes are :
Any bank active with CKE HIGH
•Refresh mode with CKE HIGH
Idle mode with CKE HIGH
Active power-down mode (regardless of MR0[12])
Pr echarge po wer-down mode if DLL is enabled during precharge power-down by
MR0[12]
ODT Latency and Posted ODT
In sy nchronous ODT mode, RTT turns on ODTL on clock cycles afte r ODT is sam ple d
HIGH by a rising clock edge and turns off ODTL off clock cycles after ODT is registered
LOW by a rising clock edge. The actual on/off times varies by tAON and tAOF around
each clock edge (see Table 82 on page 169). The ODT latency is tied to the WRITE latency
(WL) by ODTL on = WL - 2 and ODTL off = WL - 2.
Since write latency is made up of CAS WRITE latency (CWL) and ADDITIVE latency (AL),
the AL progr a mmed into the mode register (MR1[4, 3]) also applies to the ODT signal.
The DRAMs internal ODT signal is delayed a number of clock cycles defined by the AL
relative to the external ODT signal. Thus ODTL on = CWL + AL - 2 and ODTL
off = CWL + AL - 2.
Timing Parameters
S y nchronous ODT mode uses the following timing parameters: ODTL on, ODTL off,
ODTH4, ODTH8, tAON, and tAOF (see Table 82 and Figure115 on page 16 9). The
minimum RTT turn-on time (tAON [MIN]) is the point at which the device leaves High-Z
and ODT resistance begins to turn on. Maximum RTT turn-on time (tAON [MAX]) is the
point at which ODT resistance is fully on. Both are measured relative to ODTL on. The
minimum RTT turn-off time (tAOF [MIN]) is the point at which the device starts to turn
off ODT resis tanc e. Maximum RTT turn off time (tAOF [MAX]) is the point at which ODT
has reached High-Z. Both ar e measured from ODTL off.
When ODT is asserted, it must remain HIGH until ODTH4 is satisfied. If a WRITE
command is re gister ed by the DRAM with ODT HIGH, then ODT must remain HIGH
until ODTH4 (BC4) or ODTH8 (BL8) after the WRITE command (see Figure116 on
page 170). ODTH4 and ODTH8 are measured from ODT registered HIGH to ODT regis-
tered LOW or from the registration of a WRITE command until ODT is registered LOW.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 169 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 115: Synchronous ODT
Notes: 1. AL = 3; CWL = 5; ODTL on = WL = 6.0; ODTL off = WL - 2 = 6. RTT_NOM is enabled.
Table 82: Synchronous ODT Parameters
Symbol Description Begins at Defined to Definition for All DDR3
Speed Bins Units
ODTL on ODT synchronous turn-on delay ODT registered HIGH RTT_ON ±tAON CWL + AL - 2 tCK
ODTL off ODT synchronous turn-off delay ODT registered HIGH RTT_OFF ±tAOF CWL + AL - 2 tCK
ODTH4 ODT minimum HIGH time after ODT
assertion or WRITE (BC4) ODT registered HIGH, or
write registration with ODT
HIGH
ODT registered LOW 4tCK tCK
ODTH8 ODT minimum HIGH time after
WRITE (BL8) Write registration with ODT
HIGH ODT registered LOW 6tCK tCK
tAON ODT turn-on relative to ODTL on
completion Completion of ODTL on RTT_ON See Table 54 on page 70 ps
tAOF ODT turn-off relative to ODTL off
completion Completion of ODTL off RTT_OFF 0.5tCK ± 0.2tCK tCK
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
CWL - 2AL = 3AL = 3
tAON (MAX) tAOF (MAX)
T10 T11 T12 T13 T14 T15
CK
CK#
R
TT
ODT
Dont CareTransitioning
R
TT
_
NOM
CKE
tAOF (MIN)
ODTL off = CWL + AL - 2
ODTL on = CWL + AL - 2
ODTH4 (MIN)
tAON (MIN)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 170 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 116: Synchronous ODT (BC4)
Notes: 1. WL = 7. RTT_NOM is enabled. RTT_WR is disabled.
2. ODT must be held HIGH for at least ODTH4 after assertion (T1).
3. ODT must be kept HIGH ODTH4 (BC4) or ODTH8 (BL8) after the WRITE command (T7).
4. ODTH is measured from ODT first registered HIGH to ODT first registered LOW or from the registration of the WRITE
command with ODT HIGH to ODT registered LOW.
5. Although ODTH4 is satisfied from ODT registered HIGH at T6, ODT must not go LOW before T11 as ODTH4 must also be
satisfied from the registrat ion of the WRITE command at T7.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tAOF (MAX)
tAOF (MIN)
tAON (MAX) tAOF (MAX)
T10 T11 T12 T13 T14 T15 T17T16
CK
CK#
R
TT
CKE
NOP WRS4NOP NOP NOP NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOPCommand
Dont CareTransitioning
tAON (MIN)
R
TT
_
NOM
ODTLoff = WL - 2
ODTH4 (MIN)
ODTH4
ODTL off = WL - 2
ODTL on = WL - 2
tAON (MIN) tAON (MAX)
ODTH4
ODTL on = WL - 2
tAOF (MIN)
ODT
R
TT
_
NOM
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 171 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
ODT Off During READs
As the DDR3 SDRAM cannot terminate and drive at the same time, RTT must be disabled
at least one-half cloc k cyc le before the READ preamble by driving the ODT ball LOW (if
either RTT_NOM or RTT_WR is enabled). RTT may not be enabled until the end of the post-
amble as shown in the example in Figure 117 on page 172.
Note: ODT may be disabled earlier and enabled later than shown in Figure 117 on page 172.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 172 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 117: ODT During READs
Notes: 1. ODT must be disabled external ly during READs by driving ODT LOW. For example, CL = 6; AL = CL - 1 = 5; RL = AL +
CL = 11; CWL = 5; ODTL on = CWL + AL - 2 = 8; ODTL of f = CW L + AL - 2 = 8. RTT_NOM is enabled. RTT_WR is a “Don’t Care.”
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 T10 T11 T12 T13 T14 T15 T17
T16
CK
CK#
ValidAddress
DI
b + 3
DI
b + 2
DI
b + 1
DI
bDI
b + 7
DI
b + 6
DI
b + 5
DI
b + 4
DQ
DQS, DQS#
Dont CareTransitioning
CommandNOP NOP NOP NOP NOP NOP NOPNOP NOP NOP NOP NOP NOP NOP NOP NOPNOPREAD
ODTL on = CWL + AL - 2
ODT
tAON (MAX)
RL = AL + CL
ODTL off = CWL + AL - 2
tAOF (MIN)
R
TT
R
TT
_
NOM
R
TT
_
NOM
tAOF (MAX)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 173 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Asynchronous ODT Mode
Asynchronous ODT mod e is avail abl e when the DRAM runs in DLL on mode and when
either RTT_NOM or RTT_WR is enabled; however, the DLL is temporarily turned off in
precharged power-down standby (via MR0[12]). Additionally, ODT operates asynchro-
nously when the DLL is synchronizing after being reset. See “Power-Down Mode” on
page 153 for definition and guidance over power-down details.
In asynchronous ODT timing mode, the internal ODT command is not delayed by AL
relative to the external ODT command. In asynchronous ODT mode, ODT controls RTT
by analog time. The timing parameters tA ONPD and tAOFPD (s ee Tab le 83 on page 174)
re place ODTL on/tA ON and ODTL off/tAOF, respectively, when ODT operates asynchro -
nously (see Figure 118 on page 174).
The minimum RTT turn-on time (tAONPD [MIN]) is the point at which the device termi-
nation circui t leaves High-Z and ODT resistance begins to turn on. Maximum RTT turn-
on time (tAONPD [MAX]) is the point at which ODT r esistance is fully on. tA ONPD (MIN)
and tAONPD (MAX) are measured from ODT being sa mp le d H I GH.
The minimum RTT turn-off time (tAOFPD [MIN]) is the point at which the device termi-
nation circuit starts to turn off ODT resistance. Maximum RTT turn-off time (tAOFPD
[MAX]) is the point at which ODT has reached High-Z. tAOF PD (MIN) and tAOFPD
(MAX) are measured from ODT being sampled LOW.
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 174 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 118: Asynchronous ODT Timing with Fast ODT Transition
Notes: 1. AL is ignored.
Table 83: Asynchronous ODT Timing Parameters for All Speed Bins
Symbol Description Min Max Units
tAONPD Asynchronous RTT turn-on delay (power-down with DLL off) 2 8.5 ns
tAOFPD Asynchronous RTT turn-off delay (power-down with DLL off) 2 8.5 ns
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tAONPD (MAX) tAOFPD (MAX)
T10 T11 T12 T13 T14 T15 T17
T16
CK
CK#
R
TT
ODT
R
TT
_
NOM
Dont CareTransitioning
CKE
tIH tIStIH tIS
tAOFPD (MIN)
tAONPD (MIN)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 175 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Synchronous to Asynchronous ODT Mode Transition (Power-Down Entry)
There is a transition period around power-down entry (PDE) where the DRAM’s ODT
may exhibit either synchronous or asynchronous behavior . This transition period occurs
if the DLL is selected to be off when in precharge po wer-down mode by the setting
MR0[12] = 0. Power-down entry begins tANPD prior to CKE first being registered LOW,
and it ends when CKE is first r egister ed LOW. tANPD is equal to the greater of ODTL off +
1tCK or ODTL on + 1tCK. If a REFRESH command has been issued , and it is in progress
when CKE goes LOW, power-down entry will end tRFC after the REFRESH command
rather than when CKE is first registered LOW. Power-down entry will then become the
greater of tANPD and tRFC - REFRESH command to CKE registered LOW.
ODT assert ion durin g po we r -do wn en try res ults in a n RTT change as early as the le sser of
tAONPD (MIN) and ODTL on× tCK + tAON(MIN) or as late as the greater of tAONPD
(MAX) and ODTL on × tCK + tAON(MAX). O DT de-assertion during power-down entry
may result in an RTT change as early as the lesser of tAO FPD (MIN) and ODTL
off × tCK + tAOF(MIN) or as late as the greater of tAOFPD (MAX) and ODTL
off × tCK + tAOF (MAX). Table 84 on page 176 summarizes these parameters.
If the AL has a lar ge value, the uncertainty of the state of RTT becomes quite large. This is
because ODT L on and OD TL off are derived from the WL and WL is eq ual to CWL + AL.
Figure 119 on page 176 shows three different cases:
ODT_A: Synchronous behavior before tANPD
ODT_B: ODT state changes during the transition pe riod with tAONPD(MIN) less than
ODTL on × tCK + tAON (MIN) and tAONPD (MAX) greater than
ODTL on × tCK + tAON (MAX)
ODT_C: ODT state changes after the transition period with asynchronous behavior
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 176 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 119: Synchronous to Asynchronous Transition During Precharge Power-Down (DLL Off) Entry
Notes: 1. AL = 0; CWL = 5; ODTL off = WL - 2 = 3.
Table 84: ODT Parameters for Power-Down (DLL Off) Entry and Exit Transition Period
Description Min Max
Power-dow n en try transitio n perio d (power-down entry) Greater of: tANPD or tRFC - refresh to CKE LOW
Power-down exit transition period (power-down exit) tANPD + tXPDLL
ODT to RTT turn-on delay (ODTL on = WL - 2) Lesser of: tAONPD (MIN) (1ns) or
ODTL on ×tCK + tAON (MIN) Greater of: tAONPD ( MAX) (9ns) or
ODTL on ×tCK + tAON (MAX)
ODT to RTT turn-off delay (ODTL off = WL - 2) Lesser of: tAOFPD (MIN) (1ns) or
ODTL off ×tCK + tAOF (MIN) Greater of: tAOFPD (MAX) (9ns) or
ODTL off ×tCK + tAOF (MAX)
tANPD WL - 1 (greater of ODTL off + 1 or ODTL on + 1)
T0 T1 T2 T3 T4 T5 T6T7 T8 T9
tAOFPD (MAX)
ODTL off
T10 T11 T12 T13 Ta0 Ta1 Ta3Ta2
CK
CK#
DRAM RTT B
asynchronous
or synchronous RTT_NOM
DRAM RTT C
asynchronous RTT_NOM
Dont CareTransitioning
CKE
NOP NOP NOPNOP NOPCommandNOPREF NOP NOP NOP NOPNOP NOP NOP NOPNOP NOP NOP
PDE transition period
Indicates a Break In
Time Scale
ODTL off + tAOFPD (MIN)
tAOFPD (MAX)
tAOFPD (MIN)
ODTL off + tAOFPD (MAX)
tAOFPD (MIN)
tANPD
tAOF (MIN)
tAOF (MAX)
DRAM RTT A
synchronous RTT_NOM
ODT A
synchronous
ODT C
asynchronous
ODT B
asynchronous
or synchronous
tRFC (MIN)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 177 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Asynchronous to Synchronous ODT Mode Transition (Power-Down Exit)
The DRAM’s ODT may exhibit either as ynchronous or synchronous behavior during
power-down exit (PDX). This transition period occurs if the DLL is selected to be off
when in prec harge po wer -do wn mode by setting MR0[12] to “0. ” P o wer-do wn exit begins
tANPD prior to CKE first be ing registered HIGH, and it ends tXPDLL after CKE is first
registered HIGH. tANPD is equal to the greater of ODTL off + 1tCK or ODTL on + 1tCK.
The transition period is tANPD plus tXPDLL.
ODT assertion during power-down exit results in an RTT change as early as the lesser of
tAONPD (MIN) and ODTL on × tCK + tAON(MIN) or as late as the greater of
tAONPD (MAX) and ODTL on × tCK + tAON (MAX). ODT de-assertion during power-
down exit may result in an RTT change as early as the lesser of tAOFPD (MI N) and
ODTL off × tCK + tAOF(MIN) or as late as the greater of tAOFPD (MAX) and
ODTL off × tCK + tAOF(MAX). Table 84 on page 176 summar izes these parameters.
If the AL has a large value, the uncertainty of the RTT state becomes quite large. This is
because ODT L on and OD TL off are derived from the WL, and WL is equal to CWL + AL.
Figure 120 on page 178 shows three different cases:
ODT C: asynchronous behavior before tANPD
ODT B: ODT state changes during the transition period, with tA OFPD(MIN) less than
ODTL off × tCK + tAOF (MIN) and ODTL off × tCK + tAOF (MAX) greater than
tAOFPD (MAX)
ODT A: ODT sta te chang es afte r the transition pe riod with synchronous response
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 178 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 120: Asynchronous to Synchronous Transition During Precharge Power-Down (DLL Off) Exit
Notes: 1. CL = 6; AL = CL - 1; CWL = 5; ODTL off = WL - 2 = 8.
T0 T1 T2 Ta0 Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Tb0 Tb1 Tb2 Tc0 Tc1 Td0 Td1
Tc2
CK
CK#
Dont Care Transitioning
ODT C
synchronous
NOP NOP NOP
COMMAND NOP NOP NOP NOP NOP NOP NOP NOP NOP
R
TT
B
asynchronous
or synchronous
DRAM R
TT
A
asynchronous
DRAM R
TT
C
synchronous
R
TT
_
NOM
NOP NOP
ODT B
asynchronous
or synchronous
CKE
tAOF (MIN)
R
TT
_
NOM
Indicates A Break in
Time Scale
ODTL off + tAOF (MIN)
tAOFPD (MAX)
ODTL off + tAOF (MAX)
tXPDLL
tAOF (MAX)
ODTL off
ODT A
asynchronous
PDX transition period
tAOFPD (MIN)
tAOFPD (MAX)
tANPD
tAOFPD (MIN)
R
TT
_
NOM
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 179 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Asynchronous to Synchronous ODT Mode Transition (Short CKE Pulse)
If the time in the precharge power down or idle states is very short (short CKE LOW
pulse), the power-down entry and power-down exit transition periods will overlap.
When overlap occurs, the response of the DRAM’s RTT to a change in the ODT state may
be synchronous or asynchronous from the start of the power-down entry transition
period to the end of the power-down exit transition period even if the entry period ends
later than the exit period (see Figure 121 on page 1 80).
If the time in the idle state is very short (short CKE HIGH pulse), the power- down exit
and power-down entry transition periods overlap. When this overlap occurs, the
response of the DRAM’s RTT to a change in the ODT state may be synchronous or asyn-
chronous from the start of power-down exit transition period to the end of the power-
down entry transition period (see Figure 121 on page 180).
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifications without notice.
DDR3_D5.fm - Rev G 2/09 EN 180 ©2006 Micron Technology, Inc. All rights reserved.
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
Figure 121: Transition Period for Short CKE LOW Cycles with Entry and Exit Period Overlapping
Notes: 1. AL = 0, WL = 5, tANPD = 4.
Figure 122: Transition Period for Short CKE HIGH Cycles with Entry and Exit Period Overlapping
Notes: 1. AL = 0, WL = 5, tANPD = 4.
T0 T1 T2 T3 T4 T5 T6T7 T8 T9 Ta0 Ta1 Ta2 Ta3 Ta4
CK
CK#
CKE
Command
Dont Care Transitioning
tXPDLL
tRFC (MIN)
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP REF NOP NOP NOP NOP
PDE transition period
PDX transition period
Indicates a Break in
Time Scale
tANPD
Short CKE LOW transition period (RTT change asynchronous or synchronous)
tANPD
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
CK
CK#
Command
Dont Care Transitioning
NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP
tANPD tXPDLL
Indicates A Break in
Time Scale
Ta0 Ta1 Ta2 Ta3 Ta4
CKE
Short CKE HIGH transition period (RTT change asynchronous or synchonous)
tANPD
1Gb: x4, x8, x16 DDR3 SDRAM
On-Die Termination (ODT)
PDF: 09005aef826aa906/Source: 09005aef82a357c3 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
DDR3_D5.fm - Rev G 2/09 EN 181 ©2006 Micron Technology, Inc. All rights reserved.
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
www.micron.com/productsupport Customer Comment Line: 800-932-4992
Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the power supply and temperature range set forth herein. Although
considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.