400 MHz to 2700 MHz
¼ Watt RF Driver Amplifier
Data Sheet
ADL5320
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 020629106, U.S.A.
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©20082012 Analog Devices, Inc. All rights reserved.
FEATURES
Operation: 400 MHz to 2700 MHz
Gain of 16.9 dB at 880 MHz
OIP3 of 45.0 dBm at 880 MHz
P1dB of 25.4 dBm at 880 MHz
Noise figure: 4.1 dB at 880 MHz
Power supply voltage: 3.3 V to 5 V
Power supply current: 44 mA to 104 mA
Dynamically adjustable bias
No bias resistor required
Thermally efficient, MSL-1 rated SOT-89 package
Operating temperature range: 40°C to +105°C
ESD rating of ±4 kV (Class 3A)
APPLICATIONS
Wireless infrastructure
Automated test equipment
ISM/AMR applications
FUNCTIONAL BLOCK DIAGRAM
RF
IN
GND RF
OUT
12
BIAS
3
GND
ADL5320
05840-001
(2)
Figure 1.
GENERAL DESCRIPTION
The ADL5320 incorporates a dynamically adjustable biasing
circuit that allows for the customization of OIP3 and P1dB
performance from 3.3 V to 5 V without the need for an external
bias resistor. This feature gives the designer the ability to tailor
driver amplifier performance to the specific needs of the design.
This feature also creates the opportunity for dynamic biasing of
the driver amplifier, where a variable supply is used to allow for
full 5 V biasing under large signal conditions and then can reduce
the supply voltage when signal levels are smaller and lower power
consumption is desirable. This scalability reduces the need to
evaluate and inventory multiple driver amplifiers for different
output power requirements from 22 dBm to 26 dBm output
power levels.
The ADL5320 is also rated to operate across the wide temperature
range of 40°C to +105°C for reliable performance in designs
that experience higher temperatures, such as power amplifiers.
The 14 watt driver amplifier also covers the 400 MHz to 2700 MHz
wide frequency range and only requires a few external components
to be tuned to a specific band within that wide range. This high
performance, broadband RF driver amplifier is well suited for a
variety of wired and wireless applications including cellular
infrastructure, ISM band power amplifiers, defense equipment,
and instrumentation equipment. A fully populated evaluation
board is available.
The ADL5320 also delivers excellent adjacent channel power
ratio (ACPR) vs. output power and bias voltage. The driver can
deliver greater than 17 dBm of output power at 2140 MHz while
achieving an ACPR of 55 dBc at 5 V. If the bias is reduced to
3.3 V, the 55 dBc ACPR output power reduces to 9 dBm.
–90
–80
–70
–60
–50
–40
–30
–20
–20 –15 –10 –5 0 5 10 15 20
ACPR @ 5MHz CARRIER OFFSE T (d Bc)
POUT (d Bm)
SOURCE
VCC = 5V
VCC = 3.3V
05840-131
Figure 2. ACPR vs. Output Power, Single Carrier W-CDMA TM1-64 at
2140 MHz
ADL5320 Data Sheet
Rev. A | Page 2 of 20
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Typical Scattering Parameters ..................................................... 4
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Pin Configuration and Function Descriptions ............................. 6
Typical Performance Characteristics ..............................................7
High Temperature and 3.3 V Operation ................................. 11
Applications Information .............................................................. 12
Basic Layout Connections ......................................................... 12
Soldering Information and Recommended PCB Land Pattern. 12
Matching Procedure ................................................................... 13
W-CDMA ACPR Performance ................................................ 14
Evaluation Board ............................................................................ 15
Outline Dimensions ....................................................................... 17
Ordering Guide .......................................................................... 17
REVISION HISTORY
6/12Rev. 0 to Rev. A
Changes to Features Section and General Description Section ........ 1
Added Application Section and Figure 2; Renumbered
Sequentially ....................................................................................... 1
Changes to Specifications Section .................................................. 3
Deleted θJC (Junction to Paddle) Parameter, Table 3 .................... 5
Changes to Operating Temperature Range Parameter, Table 3 .. 5
Added Thermal Resistance Section and Table 4; Renumbered
Sequentially ....................................................................................... 5
Added EPAD Notation to Figure 3 ................................................. 6
Added Figure 27 .............................................................................. 10
Added High Temperature and 3.3 V Operation Section and
Figure 28 to Figure 33 .................................................................... 11
Added Applications Information Section and Figure 35 .......... 12
Changes to Soldering Information and Recommended PCB
Land Pattern .................................................................................... 12
Changed −82 dBc to −80 dBc in W-CDMA ACPR Performance
Section .............................................................................................. 14
Added Figure 39 .............................................................................. 14
Updated Outline Dimensions ....................................................... 17
2/08Revision 0: Initial Version
Data Sheet ADL5320
Rev. A | Page 3 of 20
SPECIFICATIONS
TA = 25°C, unless otherwise noted.
Table 1.
3.3 V 5 V
Parameter Test Conditions/Comments Min Typ Max Min Typ Max Unit
OVERALL FUNCTION
Frequency Range 400 2700 400 2700 MHz
FREQUENCY = 880 MHz
Gain1 15.6 16.3 16.9 17.5 dB
vs. Frequency ±50 MHz ±0.2 ±0.3 dB
vs. Temperature 40°C ≤ TA+85°C ±0.6 ±0.6 dB
vs. Supply 3.2 V to 3.4 V, 4.75 V to 5.25 V ±0.2 ±0.1 dB
Output 1 dB Compression Point 21.5 25.4 dBm
Output Third-Order Intercept Δf = 1 MHz, POUT = 10 dBm per tone 34 45 dBm
Noise Figure 3.2 4.1 dB
FREQUENCY = 2140 MHz
Gain1 12.2 12.4 13.2 14.0 dB
vs. Frequency ±50 MHz ±0.3 ±0.33 dB
vs. Temperature 40°C ≤ TA+85°C ±0.7 ±0.8 dB
vs. Supply 3.2 V to 3.4 V, 4.75 V to 5.25 V ±0.15 ±0.06 dB
Output 1 dB Compression Point 22.6 25.7 dBm
Output Third-Order Intercept Δf = 1 MHz, POUT = 10 dBm per tone 32 42 dBm
Noise Figure 3.7 4.4 dB
FREQUENCY = 2600 MHz
Gain1 10.7 11.5 12.5 13.4 dB
vs. Frequency ±100 MHz ±0.2 ±0.6 dB
vs. Temperature 40°C ≤ TA+85°C ±0.6 ±1.1 dB
vs. Supply 3.2 V to 3.4 V, 4.75 V to 5.25 V ±0.2 ±0.1 dB
Output 1 dB Compression Point 25.7 27.4 dBm
Output Third-Order Intercept
Δf = 1 MHz, P
OUT
= 10 dBm per tone
29
37
dBm
Noise Figure 4.1 5.1 dB
POWER INTERFACE Pin RFOUT
Supply Voltage 3.3 4.5 5 5.5 V
Supply Current 44 104 124 mA
vs. Temperature 40°C ≤ TA+85°C ±5.0 ±6.0 mA
Power Dissipation VSUP = 3.3 V, VSUP = 5 V 145 520 mW
1 Guaranteed maximum and minimum specified limits on this parameter are based on 6 sigma calculations.
ADL5320 Data Sheet
Rev. A | Page 4 of 20
TYPICAL SCATTERING PARAMETERS
VSUP = 5 V and TA = 25°C; the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
Freq (MHz)
S11 S21 S12 S22
Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°) Magnitude (dB) Angle (°)
400
1.42
179.88
+14.16
+134.74
32.56
+13.47
3.42
+176.22
500
1.38
+175.04
+13.97
+126.21
32.02
+8.58
3.71
+175.38
550
1.42
+173.05
+13.81
+122.24
31.84
+6.81
3.84
+175.10
600
1.48
+171.25
+13.66
+118.41
31.70
+5.25
3.96
+174.89
650
1.54
+169.59
+13.49
+114.71
31.56
+3.85
4.08
+174.74
700
1.62
+168.11
+13.32
+111.12
31.43
+2.63
4.19
+174.71
750
1.70
+166.66
+13.17
+107.64
31.29
+1.35
4.30
+174.74
800
1.80
+165.36
+13.05
+104.27
31.16
+0.20
4.41
+174.89
850
1.90
+163.99
+12.94
+100.86
31.01
0.95
4.52
+175.10
900
2.01
+162.65
+12.84
+97.48
30.85
2.23
4.62
+175.37
950
2.13
+161.32
+12.73
+94.09
30.69
3.43
4.71
+175.78
1000
2.27
+159.98
+12.65
+90.72
30.52
4.80
4.81
+176.29
1050
2.43
+158.61
+12.62
+87.34
30.32
6.24
4.89
+176.85
1100
2.63
+157.11
+12.59
+83.90
30.15
7.92
4.98
+177.52
1150
2.84
+155.60
+12.56
+80.41
29.95
9.61
5.06
+178.29
1200
3.09
+153.91
+12.55
+76.75
29.74
11.56
5.12
+179.17
1250
3.39
+152.08
+12.56
+73.03
29.54
13.63
5.18
179.85
1300
3.73
+150.14
+12.57
+69.24
29.33
15.87
5.25
178.72
1350
4.13
+147.98
+12.61
+65.23
29.12
18.39
5.28
177.52
1400
4.59
+145.57
+12.66
+61.05
28.91
21.17
5.29
176.26
1450
5.13
+143.05
+12.72
+56.75
28.69
24.17
5.27
174.93
1500
5.76
+140.31
+12.79
+52.20
28.48
27.48
5.19
173.52
1550
6.48
+137.18
+12.83
+47.46
28.28
31.05
5.12
172.60
1600
7.36
+133.46
+12.89
+42.49
28.10
34.99
5.06
171.45
1650
8.45
+129.65
+12.93
+37.41
27.95
39.05
4.94
170.38
1700
9.74
+125.36
+12.98
+32.12
27.81
-43.45
4.80
169.52
1750
11.32
+120.71
+12.99
+26.74
27.70
48.12
4.65
168.95
1800
13.34
+115.47
+12.99
+21.16
27.61
53.06
4.47
168.68
1850
16.00
+109.24
+12.97
+15.43
27.56
58.23
-4.30
168.76
1900
19.89
+100.84
+12.93
+9.57
27.55
63.67
4.14
169.26
1950
26.68
+83.39
+12.86
+3.65
27.58
69.38
3.99
170.11
2000
33.34
26.40
+12.76
2.46
27.65
75.33
3.86
171.37
2050
23.21
71.32
+12.64
8.60
27.75
81.44
3.74
172.97
2100
18.39
83.50
+12.49
14.83
27.89
87.92
3.65
175.01
2150
15.39
92.08
+12.31
21.09
28.07
94.55
3.58
177.37
2200
13.26
100.04
+12.11
27.46
28.29
101.56
3.54
+179.90
2250
11.63
107.86
+11.88
33.90
28.54
108.80
3.50
+176.83
2300
10.31
115.84
+11.62
40.49
28.82
116.46
3.47
+173.43
2350
9.20
123.94
+11.33
47.09
29.15
124.41
3.44
+169.75
2400
8.23
132.24
+11.01
53.81
29.50
132.81
3.42
+165.83
2450
7.38
140.88
+10.64
60.65
29.89
141.70
3.40
+161.63
2500
6.61
149.66
+10.24
67.57
30.31
150.89
3.36
+157.29
2550
5.89
158.59
+9.78
74.53
30.76
160.57
3.31
+152.82
2600
5.23
167.51
+9.27
81.60
31.23
170.68
3.24
+148.32
2650
4.62
176.26
+8.70
88.50
31.73
+178.90
3.17
+143.81
2700
4.05
+175.18
+8.07
95.43
32.22
+168.34
3.09
+139.40
Data Sheet ADL5320
Rev. A | Page 5 of 20
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage, VSUP 6.5 V
Input Power (50 Ω Impedance) 20 dBm
Internal Power Dissipation (Paddle Soldered) 683 mW
Maximum Junction Temperature 150°C
Operating Temperature Range −40°C to +105°C
Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
Table 4 lists the junction-to-air thermal resistance (θJA) and the
junction-to-paddle thermal resistance (θJC) for the ADL5320.
Table 4. Thermal Resistance
Package Type θJA1 θJC2 Unit
3-Lead SOT-89 35 11 °C/W
1 Measured on Analog Devices, Inc., evaluation board. For more information
about board layout, see the Soldering Information and Recommended PCB
Land Pattern section.
2 Based on simulation with JEDEC standard JESD51.
ESD CAUTION
ADL5320 Data Sheet
Rev. A | Page 6 of 20
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
RF
IN
GND
NOTES
1. THE EXPOSED PAD I S INT E RNALLY CONNE CTED TO GND.
SOLDER TO A LOW I M P E DANCE GROUND P LANE.
RF
OUT
1
2
3
GND
ADL5320
TOP VIEW
(Not to Scale)
05840-002
(2)
Figure 3. Pin Configuration
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
1 RFIN RF Input. Requires a dc blocking capacitor.
2 GND Ground. Connect to a low impedance ground plane.
3 RFOUT RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to
the external power supply. RF path requires a dc blocking capacitor.
Exposed Paddle Expose Paddle. Internally connected to GND. Solder to a low impedance ground plane.
Data Sheet ADL5320
Rev. A | Page 7 of 20
TYPICAL PERFORMANCE CHARACTERISTICS
50
45
40
35
30
25
20
15
10
5
0
05840-003
GAIN, NF (dB); P1dB, OIP3 (dBm)
FREQUENCY (MHz)
800 820 840 860 880 900 920 940 960
NF
GAIN
P1dB
OIP3 (10dBm)
Figure 4. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
800 MHz to 960 MHz
19.0
18.5
18.0
17.5
17.0
16.5
16.0
15.5
15.0
14.5
14.0
05840-004
GAIN (d B)
FREQUENCY (MHz)
800 820 840 860 880 900 920 940 960
–40°C
+
85°C
+25°C
Figure 5. Gain vs. Frequency and Temperature, 800 MHz to 960 MHz
–25.0
–25.5
–26.0
–26.5
–27.0
–27.5
–28.0
–28.5
–29.0
0
–5
–10
–15
–20
–25
–30
–35
–40
05840-005
S12 (dB)
S11 (dB) AND S22 ( dB)
FREQUENCY (MHz)
700 750 800 850 900 950 1000
S12
S11
S22
Figure 6. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 800 MHz to 960 MHz
50
45
40
35
30
25
20
30
29
28
27
26
25
24
05840-006
OIP3 (dBm)
P1d B ( dBm)
FREQUENCY (MHz)
800 820 840 860 880 900 920 940 960
P1dB (–40°C)
P1dB (+85°C)
OIP3 (+25°C)
OIP3 (+85°C)
OIP3 (–40°C)
P1dB (+25°C)
Figure 7. OIP3 and P1dB vs. Frequency and Temperature,
800 MHz to 960 MHz
50
46
42
38
34
30–2 0246810 12 14 16 18 20 22
05870-007
OIP3 (dBm)
P
OUT
(d Bm)
830MHz
930MHz
880MHz
850MHz
960MHz
Figure 8. OIP3 vs. POUT and Frequency, 800 MHz to 960 MHz
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
05840-008
NF ( dB)
FREQUENCY (MHz)
700 750 800 850 900 950 1000
–40°C
+25°C
+85°C
Figure 9. Noise Figure vs. Frequency and Temperature, 800 MHz to 960 MHz
ADL5320 Data Sheet
Rev. A | Page 8 of 20
2060 2080 2100 2120 2140 2160 2180 2200 2220
45
40
35
30
25
20
15
10
5
0
05840-009
FREQUENCY (MHz)
NF
GAIN
P1dB
OIP3 (10dBm)
GAIN, NF (dB); P1dB, OIP3 (dBm)
Figure 10. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2060 MHz to 2200 MHz
2060 2080 2100 2120 2140 2160 2180 2200 2220
16
15
14
13
12
11
10
05840-010
GAIN (d B)
FREQUENCY (MHz)
–40°C
+85°C
+25°C
Figure 11. Gain vs. Frequency and Temperature, 2060 MHz to 2200 MHz
–23
–24
–25
–26
–27
–28
–29
0
–5
–10
–15
–20
–25
–30
–35
–40
05840-011
S12 (dB)
S11 (dB) AND S22 ( dB)
FREQUENCY (MHz)
1900 1950 2000 21002050 2150 2200 2250 2300
S11
S12
S22
Figure 12. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2060 MHz to 2200 MHz
45
43
41
39
37
35
33
31
29
29.0
28.5
28.0
27.5
27.0
26.5
26.0
25.5
25.0
24.5
05840-012
OIP3 (dBM)
P1d B ( dBm)
FREQUENCY (MHz)
2060 2080 2100 2120 2140 2160 2180 2200 2220
P1dB (–40°C)
P1dB (+85°C)
OIP3 (+25°C)
OIP3 (+85°C)
OIP3 (–40°C)
P1dB (+25°C)
Figure 13. OIP3 and P1dB vs. Frequency and Temperature,
2060 MHz to 2200 MHz
43
41
39
37
35
33
31–2 0246810 12 14 16 18 20 22
05840-013
OIP3 (dBm)
P
OUT
(d Bm)
2190MHz
2060MHz 2090MHz
2140MHz
2220MHz
Figure 14. OIP3 vs. POUT and Frequency, 2060 MHz to 2200 MHz
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
05840-014
NF ( dB)
FREQUENCY (MHz)
1900 1950 2000 2050 2100 2150 2200 2250 2300
–40°C
+25°C
+85°C
Figure 15. Noise Figure vs. Frequency and Temperature,
2060 MHz to 2200 MHz
Data Sheet ADL5320
Rev. A | Page 9 of 20
40
35
30
25
20
15
10
5
0
05840-015
GAIN, NF (dB); P1dB, OIP3 (dBm)
FREQUENCY (MHz)
2500 2520 2540 2560 2580 2660 26802600 2620 2640 2700
OIP3 (10dBm)
NF
GAIN
P1dB
Figure 16. Gain, P1dB, OIP3, and Noise Figure vs. Frequency,
2500 MHz to 2700 MHz
2500 2550 2600 2650 2700
15
14
13
12
11
10
9
05840-016
GAIN (d B)
FREQUENCY (MHz)
–40°C
+85°C
+25°C
Figure 17. Gain vs. Frequency and Temperature, 2500 MHz to 2700 MHz
–25.0
–25.5
–26.0
–26.5
–27.0
–27.5
–28.0
–28.5
–29.0
–29.5
–30.0
0
–5
–10
–15
–20
–25
–30
–35
–40
05840-017
S12 (dB)
S11 (dB) AND S22 ( dB)
FREQUENCY (MHz)
2400 2450 2500 26002550 27002650 2750 2800
S11
S12
S22
Figure 18. Input Return Loss (S11), Output Return Loss (S22), and Reverse
Isolation (S12) vs. Frequency, 2500 MHz to 2700 MHz
2500 2550 2600 2650 2700
39
38
37
36
35
34
33
32
31
30
29
05840-018
OIP3 (dBm)
FREQUENCY (MHz)
32
31
30
29
28
27
26
25
P1dB (–40°C)
P1dB (+25°C)
P1dB (+85°C)
OIP3 (+25°C)
OIP3 (+85°C)
OIP3 (–40°C)
P1d B ( dBm)
Figure 19. OIP3 and P1dB vs. Frequency and Temperature,
2500 MHz to 2700 MHz
46
44
42
40
38
36
34
32
30
05840-019
OIP3 (dBm)
POUT (d Bm)
–3 –1 1357911 13 15 17 19 21 23
2500MHz
2700MHz 2600MHz
Figure 20. OIP3 vs. POUT and Frequency, 2500 MHz to 2700 MHz
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
05840-020
NF (dB)
FREQUENCY (MHz)
2400 2450 2500 2550 2600 2650 2700 2750 2800
–40°C
+25°C
+85°C
Figure 21. Noise Figure vs. Frequency and Temperature,
2500 MHz to 2700 MHz
ADL5320 Data Sheet
Rev. A | Page 10 of 20
18
16
14
12
10
8
6
4
2
042.0 42.8 43.6 44.4 45.2 46.0 46.8 47.6
05840-021
PERCE NTAGE ( %)
OIP3 (dBm)
Figure 22. OIP3 Distribution at 880 MHz
60
50
40
30
20
10
024.4 24.8 25.2 25.6 26.0 26.4 26.8
05840-022
PERCE NTAGE ( %)
P1d B ( dBm)
Figure 23. P1dB Distribution at 880 MHz
30
25
20
15
10
5
016.65 16.75 16.85 16.95 17.05 17.15 17.25
05840-023
PERCE NTAGE ( %)
GAIN (d B)
Figure 24. Gain Distribution at 880 MHz
50
40
30
20
10
03.80 3.88 3.96 4.04 4.12 4.20 4.28
05840-024
PERCE NTAGE ( %)
NF ( dB)
Figure 25. Noise Figure Distribution at 880 MHz
120
115
110
105
100
95
90
85
80
05840-025
SUPP LY CURRENT (mA)
TEMPERATURE (°C)
–40 –30 –20 –10 010 20 30 40 50 60 70 80
5.25V
5.0V
4.75V
Figure 26. Supply Current vs. Supply Voltage and Temperature (Using
880 MHz Matching Components)
20
40
60
80
100
120
140
160
180
200
220
240
–6 –4 –2 0246810 12 14 16 18 20 22 24 26 28
SUPPLY CURRENT ( mA)
P
OUT
(d Bm)
5.0V
3.3V
05840-126
Figure 27. Supply Current vs. POUT (2140 MHz Matching Components)
Data Sheet ADL5320
Rev. A | Page 11 of 20
HIGH TEMPERATURE AND 3.3 V OPERATION
The ADL5320 has excellent performance at temperatures more than 85°C. At 105°C, the gain and P1dB decrease by 0.2 dB, the OIP3
decreases by 0.4 dB, and the noise figure increases by 0.2 dB compared with the data at 85°C. Figure 28, Figure 29, and Figure 30 show
the performance at 105°C.
10
11
12
13
14
15
16
2060 2080 2100 2120 2140 2160 2180 2200 2220
GAIN (d B)
FREQUENCY (MHz)
25°C
85°C
105°C
05840-133
Figure 28. Gain vs. Frequency and Temperature,
5 V Supply, 2060 MHz to 2200 MHz
29
31
33
35
37
39
41
43
45
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
2060 2080 2100 2120 2140 2160 2180 2200 2220
OIP3 (dBm)
P1d B ( dBm)
FREQUENCY (MHz)
05840-134
25°C
25°C
85°C
85°C
105°C
105°C
Figure 29. OIP3 and P1dB vs. Frequency and Temperature,
5 V Supply, 2060 MHz to 2200 MHz
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
1900 1950 2000 2050 2100 2150 2200 2250 2300
NOISE FIGURE (dB)
FREQUENCY (MHz)
85°C
25°C
105°C
05840-135
Figure 30. Noise Figure vs. Frequency and Temperature,
5 V Supply, 2060 MHz to 2200 MHz
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
2060 2080 2100 2120 2140 2160 2180 2200 2220
GAIN (d B)
FREQUENCY (MHz)
+25°C
–40°C
+85°C
+105°C
05840-136
Figure 31. Gain vs. Frequency and Temperature,
3.3 V Supply, 2060 MHz to 2200 MHz
27
28
29
30
31
32
33
21
22
23
24
25
26
27
2060 2080 2100 2120 2140 2160 2180 2200 2220
OIP3 (dBm)
P1d B ( dBm)
FREQUENCY (MHz)
+25°C
+25°C
–40°C
–40°C
+85°C
05840-137
+105°C
+85°C +105°C
Figure 32. OIP3 and P1dB vs. Frequency and Temperature,
3.3 V Supply, 2060 MHz to 2200 MHz
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
1900 1950 2000 2050 2100 2150 2200 2250 2300
NOISE FIGURE (dB)
FREQUENCY (MHz)
+85°C
+105°C
+25°C
–40°C
05840-138
Figure 33. Noise Figure vs. Frequency and Temperature,
3.3 V Supply, 2060 MHz to 2200 MHz
ADL5320 Data Sheet
Rev. A | Page 12 of 20
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5320 are shown in
Figure 34. Table 6 lists the required matching components.
Capacitors C1, C2, C3, C4, and C7 are Murata GRM155 series
(0402 size) and Inductor L1 is a Coilcraft 0603CS series (0603
size). For all frequency bands, the placement of C3 and C7 are
critical. From 2300 MHz to 2700 MHz, the placement of C2 is
also important. Table 7 lists the recommended component
placement for various frequencies.
A 5 V dc bias is supplied through L1 which is connected to
RFOUT (Pin 3). In addition to C4, 10 nF and 10 µF power supply
decoupling capacitors are also required. The typical current
consumption for the ADL5320 is 110 mA.
RF
IN
GND
GND
RF
OUT
12
(2)
3
ADL5320
C6 10µF
C5 10nF
C4
1
L1
1
VSUP
GND
RF
IN
C2
1
C7
1
RF
OUT
C1
1
C3
1
λ1
2
λ3
2
λ4
2
λ2
2
1
SEE TABL E 5 FO R FREQ UE NCY SPECIFI C COMPONENTS.
2
SEE TABL E 10 FO R RE COMME NDE D COMP ONENT SPACING.
05840-026
Figure 34. Basic Connections
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
Figure 35 shows the recommended land pattern for the ADL5320.
To minimize thermal impedance, the exposed paddle on the
SOT-89 package underside is soldered down to a ground plane
along with Pin 2. If multiple ground layers exist, stitch them
together using vias. For more information on land pattern design
and layout, refer to the Application Note AN-772, A Design and
Manufacturing Guide for the Lead Frame Chip Scale Package
(LFCSP).
The land pattern on the ADL5320 evaluation board provides a
measured thermal resistance (θJA) of 35° C / W. To measure θJA, the
temperature at the top of the SOT-89 package is found with an
IR temperature gun. Thermal simulation suggests a junction
temperature 10°C higher than the top of the package temperature.
With additional ambient temperature and I/O power
measurements, θJA can be determined.
0.86mm
5.56mm 0.20mm
1.80mm
1.27mm
0.62mm
3.48mm
1.50mm 3.00mm
05840-027
Figure 35. Recommended Land Pattern
Table 6. Recommended Components for Basic Connections
Frequency (MHz) C1 (pF) C2 (pF) C3 (pF) C4 (pF) C7 (pF) L1 (nH)
450 to 500 100 100 18 100 6.8 47
800 to 960 47 47 6.8 100 2.2 47
1805 to 1880 22 22 0.5 22 1.5 15
1930 to 1990 22 22 0.5 22 1.5 15
2110 to 2170 22 22 0.5 22 1.5 15
2300 to 2400
12
2.2
1.2
12
1.0
15
2500 to 2700 12 1.0 1.8 12 0.5 15
Table 7. Matching Component Spacing
Frequency (MHz) λ1 (mils) λ2 (mils) λ3 (mils) λ4 (mils)
450 to 500 391 75 364 50
800 to 960 200 75 100 350
1805 to 2170 300 75 175 275
2300 to 2400 225 75 125 125
2500 to 2700 142 75 89 75
Data Sheet ADL5320
Rev. A | Page 13 of 20
MATCHING PROCEDURE
The ADL5320 is designed to achieve excellent gain and IP3
performance. To achieve this, both input and output matching
networks must present specific impedance to the device. The
matching components listed in Table 7 were chosen to provide
−10 dB input return loss while maximizing OIP3. The load-pull
plots (Figure 36, Figure 37, and Figure 38) show the load
impedance points on the Smith chart where optimum OIP3, gain,
and output power can be achieved. These load impedance values
(that is, the impedance that the device sees when looking into
the output matching network) are listed in Table 8 and Table 9
for maximum gain and maximum OIP3, respectively. The contours
show how each parameter degrades as it is moved away from
the optimum point.
From the data shown in Table 8 and Table 9 it becomes clear that
maximum gain and maximum OIP3 do not occur at the same
impedance. This can also be seen on the load-pull contours in
Figure 36 through Figure 38. Thus, output matching generally
involves compromising between gain and OIP3. In addition,
the load-pull plots demonstrate that the quality of the output
impedance match must be compromised to optimize gain and/or
OIP3. In most applications where line lengths are short and
where the next device in the signal chain presents a low input
return loss, compromising on the output match is acceptable.
To adjust the output match for operation at a different frequency or
if a different trade-off between OIP3, gain, and output impedance
is desired, the following procedure is recommended.
For example, to optimize the ADL5320 for optimum OIP3 and
gain at 700 MHz use the following steps:
1. Install the recommended tuning components for a 800 MHz
to 960 MHz tuning band, but do not install C3 and C7.
2. Connect the evaluation board to a vector network analyzer
so that input and output return loss can be viewed
simultaneously.
3. Starting with the recommended values and positions for
C3 and C7, adjust the positions of these capacitors along
the transmission line until the return loss and gain are
acceptable. Push-down capacitors that are mounted on small
sticks can be used in this case as an alternative to soldering.
If moving the component positions does not yield satisfactory
results, then the values of C3 and C7 should be increased
or decreased (most likely increased in this case as the user
is tuning for a lower frequency). Repeat the process.
4. Once the desired gain and return loss are realized, OIP3
should be measured. Most likely, it will be necessary to go
back and forth between return loss/gain and OIP3
measurements (probably compromising most on output
return loss) until an acceptable compromise is achieved.
05840-028
Figure 36. Load-Pull Contours, 880 MHz
05840-029
Figure 37. Load-Pull Contours, 2140 MHz
05840-030
Figure 38. Load-Pull Contours, 2600 MHz
ADL5320 Data Sheet
Rev. A | Page 14 of 20
Table 8. Load Conditions for Gain MAX
Frequency (MHz)
ΓLoad
(Magnitude) ΓLoad (°) Gain MAX (dB)
880 0.5147 159.88 17.76
2140 0.6611 134.40 13.78
2600 0.5835 133.80 12.36
Table 9. Load Conditions for IP3 MAX
Frequency (MHz)
ΓLoad
(Magnitude) ΓLoad (°) IP3 MAX (dBm)
880 0.4156 −138.22 46.29
2140 0.5035 +110.27 42.72
2600 0.4595 +102.48 43.01
W-CDMA ACPR PERFORMANCE
Figure 39 shows a plot of adjacent channel power ratio (ACPR)
vs. POUT for the ADL5320. The signal type being used is a single
W-CDMA carrier (Test Model 164) at 2140 MHz. This signal
is generated by a very low ACPR source. ACPR is measured at
the output by a high dynamic range spectrum analyzer, which
incorporates an instrument noise correction function.
The ADL5320 achieves an ACPR of −80 dBc at 0 dBm output,
at which point device noise and not distortion is beginning to
dominate the power in the adjacent channels. At an output
power of 10 dBm, ACPR is still very low at 70 dBc making the
device particularly suitable for PA driver applications.
–90
–80
–70
–60
–50
–40
–30
–20
–20 –15 –10 –5 0 5 10 15 20
ACPR @ 5MHz CARRIER OFFSE T (d Bc)
POUT (d Bm)
SOURCE
VCC = 5V
VCC = 3.3V
05840-031
Figure 39. ACPR vs. POUT, Single Carrier W-CDMA (Test Model 164) at
2140 MHz Evaluation Board
Data Sheet ADL5320
Rev. A | Page 15 of 20
EVALUATION BOARD
The schematic of the ADL5320 evaluation board is shown in
Figure 40. This evaluation board uses 25 mil wide traces and is
made from FR4 material. The evaluation board comes tuned for
operation in the 1805 MHz to 2140 MHz tuning band. Tuning
options for other frequency bands are also provided in Table 10.
The recommended placement for these components is provided
in Table 11. The inputs and outputs should be ac-coupled with
appropriately sized capacitors. DC bias is provided to the
amplifier via an inductor connected to the RFOUT pin. A bias
voltage of 5 V is recommended.
RF
IN
GND
GND
RF
OUT
12
(2)
3
ADL5320
C6 10µF
C5 10nF
C4 22pF
L1
15nH
VSUPGND
RF
IN
C2
22pF
C7
1.5pF
RF
OUT
C1
22pF
C3
0.5pF
λ1 λ3 λ4
λ2
05840-032
Figure 40. Evaluation Board, 1805 MHz to 2170 MHz
10uF
C3
0.5pF C7
1.5pF
C1
22pF C2
22pF
10nF
22pF
15nH
05840-033
Figure 41. Evaluation Board Layout and Default Component Placement for
Operation from 1805 MHz to 2170 MHz
Table 10. Evaluation Board Configuration Options
Component Function 450 MHz to 500 MHz 800 MHz to 960 MHz
1805 MHz to
2170 MHz (Default
Configuration)
2300 MHz to
2400 MHz
2500 MHz to
2700 MHz
C1, C2 AC coupling
capacitors
0402, 100 pF 0402, 47 pF 0402, 22pF C1= 0402 12 pF,
C2 = 0402 2.2 pF
C1 = 0402 12 pF,
C2 = 0402 1.0 pF
C4, C5, C6 Power supply
bypassing
capacitors
C4 = 0603 100 pF,
C5 = 0603 10 nF,
C6 = 1206 10 µF
C4 = 0603 100 pF,
C5 = 0603 10 nF,
C6 = 1206 10 µF
C4 = 0402 22pF,
C5 = 0603 10 nF,
C6 = 1206 10 µF
C4 = 0603 12 pF,
C5 = 0603 10 nF,
C6 = 1206 10 µF
C4 = 0603 12 pF,
C5 = 0603 10 nF,
C6 = 1206 10 µF
L1 DC bias inductor 0603, 47 nH 0603, 47 nH 0603, 15 nH 0603, 15 nH 0603, 15 nH
C3, C7 Tuning
capacitors
C3 = 0402 18 pF,
C7 = 0402 6.8 pF
C3 = 0402 6.8 pF,
C7 = 0402 2.2 pF
C3 = 0402 0.5 pF,
C7 = 0402 1.5 pF
C3 = 0402 1.2 pF,
C7 = 0402 1.0 pF
C3 = 0402 1.8 pF,
C7 = 0402 0.5 pF
R1 R1 = 0402 0 Ω R1 = 0402 0 Ω
VSUP, GND Power supply
connections
VSUP red test loop,
GND black test loop
VSUP red test loop,
GND black test loop
VSUP red test loop,
GND black test loop
VSUP red test loop,
GND black test loop
VSUP red test loop,
GND black test loop
Table 11. Recommended Component Spacing on Evaluation Board
Frequency (MHz) λ1 (mils) λ2 (mils) λ3 (mils) λ4 (mils)
450 to 500 391 75 364 50
800 to 960
200
75
100
350
1805 to 2170 300 75 175 275
2300 to 2400 225 75 125 125
2500 to 2700 142 75 89 75