HITFET BTS 117 Smart Lowside Power Switch Features Product Summary * Logic Level Input Drain source voltage VDS 60 * Input Protection (ESD) On-state resistance RDS(on) 100 m * Thermal Shutdown Current limit ID(lim) 7 A * Overload protection Nominal load current ID(ISO) 3.5 A * Short circuit protection Clamping energy EAS V 1000 mJ * Overvoltage protection * Current limitation * Status feedback with external input resistor * Analog driving possible Application * All kinds of resistive, inductive and capacitive loads in switching or linear applications * C compatible power switch for 12 V and 24 V DC applications * Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET in Smart SIPMOS chip on chip technology. Fully protected by embedded protected functions. V bb + LOAD M Drain 2 dv/dt limitation 1 IN ESD Overload protection Current Overvoltage protection lim itation Overtemperature protection Short circuit circuit Short protection protection Source HIT F ET Semiconductor Group Page 1 3 13.07.1998 BTS 117 Maximum Ratings at Tj = 25 C unless otherwise specified Parameter Symbol Value Drain source voltage VDS 60 Drain source voltage for short circuit protection Continuous input current 1) VDS(SC) 32 Unit V mA IIN -0.2V VIN 10V no limit | IIN | 2 VIN < -0.2V or VIN > 10V Operating temperature Tj - 40 ... +150 Storage temperature Tstg - 55 ... +150 Power dissipation Ptot 50 W EAS 1000 mJ 3000 V C TC = 25 C Unclamped single pulse inductive energy ID(ISO) = 3.5 A Electrostatic discharge voltage (Human Body Model) VESD according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1 - 1993 Load dump protection VLoadDump2) = VA + VS V VLD VIN=low or high; VA=13.5 V td = 400 ms, RI = 2 , ID=0,5*3.5A 75 td = 400 ms, RI = 2 , ID= 3.5A 70 DIN humidity category, DIN 40 040 E IEC climatic category; DIN IEC 68-1 40/150/56 Thermal resistance junction - case: R thJC 2.5 junction - ambient: R thJA 75 R thJA 45 SMD version, device on PCB: 3) K/W 1A sensor holding current of 500 A has to be guaranted in the case of thermal shutdown (see also page 3) 2V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 3Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70 m thick) copper area for Drain connection. PCB is vertical without blown air. Semiconductor Group Page 2 13.07.1998 BTS 117 Electrical Characteristics Symbol Parameter at Tj=25C, unless otherwise specified Values Unit min. typ. max. 60 - 73 V - - 5 A 1.3 1.7 2.2 V IIN(1) - 30 60 A Input current - current limitation mode, ID=ID(lim) : IIN(2) - 120 300 800 2200 4000 Tj = 25 C 500 - - Tj = 150 C 300 - - Characteristics Drain source clamp voltage VDS(AZ) Tj = - 40 ...+ 150C, ID = 10 mA Off state drain current IDSS VDS = 32 V, Tj = -40...+150 C, VIN = 0 V Input threshold voltage VIN(th) ID = 0.7 mA Input current - normal operation, ID 2 mA @ VIN >10V. t0 : tm : t1 : t2 : Semiconductor Group Page 5 tm t1 t2 Turn on into a short circuit Measurementpoint for ID(lim) Activation of the fast temperature sensor and regulation of the drain current to a level wher the junction temperature remains constant. Thermal shutdown caused by the second temperature sensor, achieved by an integrating measurement. 13.07.1998 BTS 117 Maximum allowable power dissipation On-state resistance Ptot = f(Tc ) RON = f(Tj); ID=3.5A; VIN =10V BTS 117 200 50 W 40 150 RDS(on) Ptot 35 max. 125 30 25 100 20 75 typ. 15 50 10 25 5 0 0 20 40 60 80 100 120 C 0 -50 150 -25 0 25 50 75 100 C 150 Tj 150 On-state resistance Typ. input threshold voltage RON = f(Tj); ID= 3.5A; VIN=5V VIN(th) = f(Tj ); ID =0.7A; VDS=12V 250 2.0 V 200 1.6 RDS(on) VIN(th) 175 1.4 150 1.2 max. 125 1.0 100 0.8 typ. 75 0.6 50 0.4 25 0.2 0 -50 -25 0 25 50 75 100 C 150 Tj Semiconductor Group 0.0 -50 -25 0 25 50 75 100 C 150 Tj Page 6 13.07.1998 BTS 117 Typ. transfer characteristics Typ. output characteristic ID = f(VIN); VDS =12V; Tj=25C ID = f(VDS); Tj=25C Parameter: VIN 10 10 10V 6V 5V A A ID 4V ID 6 6 4 4 Vin=3V 2 2 0 0 1 2 3 4 5 V 6 0 0 8 1 2 3 4 V 6 VDS VIN Transient thermal impedance Z thJC = f(tP) Parameter: D=tP/T 10 1 K/W RthJC 10 0 D=0.5 0.2 0.1 0.05 10 -1 0.02 0.01 0.005 0 10 -2 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 s 10 2 tP Semiconductor Group Page 7 13.07.1998 BTS 117 Application examples: Status signal of thermal shutdown by monitoring input current R St IN C V IN D HITFET V bb S V V IN thermal shutdown V = RST *IIN(3) Semiconductor Group Page 8 13.07.1998 BTS 117 Package and ordering code all dimensions in mm Ordering Code: Q67060-S6500-A2 Ordering code: Q67060-S6500-A3 Semiconductor Group Page 9 13.07.1998 BTS 117 Edition 7.97 Published by Siemens AG, Bereich Halbleiter Vetrieb, Werbung, Balanstrae 73, 81541 Munchen (c) Siemens AG 1997 All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes a type of component and shall not be considered as warranted characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components 1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1)A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2)Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain and/or protecf human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Semiconductor Group Page 10 13.07.1998