LM1770
LM1770 Low-Voltage SOT23 Synchronous Buck Controller With No External
Compensation
Literature Number: SNVS403B
LM1770
Low-Voltage SOT23 Synchronous Buck Controller With
No External Compensation
General Description
The LM1770 is an efficient synchronous buck switching con-
troller in a tiny SOT23 package. The constant on-time control
scheme provides a simple design free of compensation com-
ponents, allowing minimal component count and board
space. It also incorporates a unique input feed-forward to
maintain a constant frequency independent of the input volt-
age. The LM1770 is optimized for a low voltage input range
of 2.8V to 5.5V and can provide an adjustable output as low
as 0.8V. Driving an external high side PFET and low side
NFET it can provide efficiencies as high as 95%.
Three versions of the LM1770 are available depending on
the switching frequency desired for the application. Nominal
switching frequencies are in the range of 100kHz to
1000kHz.
Features
nInput voltage range of 2.8V to 5.5V
n0.8V reference voltage
nNo compensation required
nConstant frequency across input range
nLow quiescent current of 400µA
nInternal soft-start
nShort circuit protection
nTiny SOT-23 package
Applications
nSimple To Design, High Efficiency Step Down Switching
Regulators
nSet-Top Boxes
nCable Modems
nPrinters
nDigital Video Recorders
nServers
Typical Application Circuit
20166201
July 2006
LM1770 Low-Voltage SOT23 Synchronous Buck Controller With No External Compensation
© 2006 National Semiconductor Corporation DS201662 www.national.com
Connection Diagram
Top View
20166202
SOT23-5 Package
NS Package Number MA05B
Ordering Information
Order Number Package Type NSC Package Drawing On-time Supplied As
LM1770SMF SOT23-5 MF05A 500ns 1000 units Tape and Reel
LM1770SMFX SOT23-5 MF05A 500ns 3000 units Tape and Reel
LM1770TMF SOT23-5 MF05A 1000ns 1000 units Tape and Reel
LM1770TMFX SOT23-5 MF05A 1000ns 3000 units Tape and Reel
LM1770UMF SOT23-5 MF05A 2000ns 1000 units Tape and Reel
LM1770UMFX SOT23-5 MF05A 2000ns 3000 units Tape and Reel
Pin Descriptions
Pin # Name Function
1V
IN
Input supply
2 GND Ground
3 LG NFET Gate Drive
4 HG PFET Gate Drive
5 FB Feedback Pin
LM1770
www.national.com 2
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
V
IN
-0.3V to 6V
Storage Temperature Range −65˚C to 150˚C
Junction Temperature 150˚C
Lead Temperature (soldering, 10sec) 260˚C
ESD Rating 2.5kV
Operating Ratings
V
IN
to GND 2.8V to 5.5V
Junction Temperature Range (T
J
) −40˚C to
+125˚C
Electrical Characteristics Specifications with standard typeface are for T
J
= 25˚C, and those in bold face
type apply over the full Junction Temperature Range (−40˚C to +125˚C). Minimum and Maximum limits are guaranteed
through test, design or statistical correlation. Typical values represent the most likely parametric norm at T
J
= 25˚C and are
provided for reference purposes only. Unless otherwise specified V
IN
= 3.3V.
Symbol Parameter Conditions Min Typ Max Unit
VFB Feedback pin voltage V
IN
= 3.3V 0.782 0.80 0.818 V
V
IN
= 5.0V 0.772 0.79 0.808
V
FB
/V
IN
Line Regulation V
IN
= 2.8V to 5.5V -5 mV/V
I
Q
Operating Quiescent current V
FB
= 0.9V 400 600 µA
T
ON
Switch On-Time LM1770S - (500ns) 0.4 0.5 0.6 µs
LM1770T - (1000ns) 0.8 1.0 1.2
LM1770U - (2000ns) 1.6 2.0 2.4
T
OFF_MIN
Minimum Off-Time LM1770S - (500ns) 150 250 ns
LM1770T - (1000ns) 135 225
LM1770U - (2000ns) 120 220
T
D
Gate Drive Dead-Time 70 ns
I
FB
Feedback pin bias current V
FB
= 0.9V 50 nA
V
UVLO
Under-voltage lock out V
IN
Rising Edge 2.6 2.8 V
V
UVLO_HYS
Under-voltage lock out hysteresis 30 mV
V
SC_TH
Feedback pin Short Circuit Latch
Threshold
0.5 0.55 0.65 V
R
DS(ON) 1
HG FET driver pull-up On resistance I
HG
=20mA 5
R
DS(ON) 2
HG FET driver pull-down On resistance I
HG
=20mA 9
R
DS(ON) 3
LG FET driver pull-up On resistance I
LG
=20mA 9
R
DS(ON) 4
LG FET driver pull-down On resistance I
LG
=20mA 5
Note 1: Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. Operating Ratings indicate conditions for which the device is
intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications, see Electrical Characteristics.
LM1770
www.national.com3
Typical Performance Characteristics
T
ON
vs Temperature (LM1770S) Quiescent Current vs Temperature
20166203 20166204
T
OFF
vs Temperature Feedback Voltage vs Temperature
20166205 20166206
Deadtime vs Temperature Short Circuit Threshold vs Temperature
20166225 20166226
LM1770
www.national.com 4
Typical Performance Characteristics (Continued)
UVLO Threshold vs Temperature T
ON
vs V
IN
(LM1770S)
20166227 20166230
T
ON
vs Temperature (LM1770T) T
ON
vs V
IN
(LM1770T)
20166228 20166231
T
ON
vs Temperature (LM1770U) T
ON
vs V
IN
(LM1770U)
20166229 20166232
LM1770
www.national.com5
Typical Performance Characteristics (Continued)
Efficiency vs I
OUT
(V
IN
= 5V, V
OUT
= 3.3V)
Efficiency vs I
OUT
(V
IN
= 5V, V
OUT
= 2.5V)
20166235 20166236
Efficiency vs I
OUT
(V
IN
= 5V, V
OUT
= 1V)
Efficiency vs I
OUT
(V
IN
= 3.3V, V
OUT
= 0.8V)
20166237 20166238
LM1770
www.national.com 6
Block Diagram
20166207
LM1770
www.national.com7
Application Information
THEORY OF APPLICATION
The LM1770 synchronous buck switcher has a control
scheme that is referred to as constant on-time control. This
topology relies on a fixed switch on-time to regulate the
output voltage. This on-time is internally set by EEPROM
and is available with three different set-points to allow for
different frequency options. The LM1770 automatically ad-
justs the on-time during operation inversely with the input
voltage (V
IN
) to maintain a constant frequency. Therefore the
switching frequency during continuous conduction mode is
independent of the inductor and capacitor size unlike hyster-
etic switchers.
At the beginning of the cycle the LM1770 turns on the high
side PFET for a fixed duration. This on-time is predetermined
(internally set by EEPROM and adjusted by V
IN
) and the
switch will not turn off until the timer has completed its
period. The PFET will then turn off for a minimum pre-
determined time period. This minimum T
OFF
of 150ns is
internally set and cannot be adjusted. This is to prevent false
triggering from occurring on the comparator due to noise
from the SW node transition. After the minimum T
OFF
period
has expired, the PFET will remain off until the comparator
trip-point has been reached. Upon passing this trip-point (set
at 0.8V at the feedback pin), the PFET will turn back on and
the process will repeat, thus regulating the output.
The NFET control is complementary to the PFET control with
the exception of a short dead-time to prevent shoot through
from occurring.
DEVICE OPERATION
Timing Opinion
Three versions of the LM1770 are available each with a
predetermined T
ON
set internally by EEPROM. This T
ON
setting will determine the switching frequency for the appli-
cation. Derivation and calculation of the switching frequen-
cy’s dependence on V
IN
and T
ON
can be seen in the follow-
ing section.
In a PWM buck switcher the following equations can be
manipulated to obtain the switching frequency. The first
equation shows the standard duty-cycle equation given by
the volts-seconds balance on the inductor with the following
equations defining standard relationships:
T
ON
=DxT
P
Using this equations and solving for duty-cycle:
D=f
SW
xT
ON
Frequency can now be expressed as:
Or simply written as:
where,
α=V
IN
xT
ON
To maintain a set frequency in an application, αis always
held constant by varying T
ON
inversely with V
IN
. The three
versions of the LM1770 are identified by the on times at a
V
IN
of 3.3V for consistency. For clarification see the table
below:
Product ID T
ON
@3.3V α(V µs)
LM1770S 0.5µs 1.65
LM1770T 1.0µs 3.3
LM1770U 2.0µs 6.6
The variation of T
ON
versus V
IN
can also be expressed
graphically. These graphs can be found in the typical curves
section of the datasheet.
With αbeing a constant regardless of the version of the
LM1770 used, equation [6] shows that the only dependent
variable remaining is V
OUT
. Since V
OUT
will be a constant in
any application, the frequency will also remain constant. The
switching frequency at which the application runs depends
upon the V
OUT
desired and the LM1770 version chosen. For
any V
OUT
, three frequency options (LM1770 versions) can
be selected. This can be seen in the table below. The rec-
ommended frequency range of operation is 100kHz to
1000kHz.
VOUT
Timing Options
500ns 1000ns 2000ns
0.8 485 242 121
1 606 303 152
1.2 727 364 182
1.5 909 455 227
1.8 1091 545 273
2.5 1515 758 379
3.3 2000 1000 500
Switching Frequency (kHz) of LM1770 based on output voltage and timing
option.
SHORT-CIRCUIT PROTECTION
The LM1770 has an internal short circuit comparator that
constantly monitors the feedback node (except during soft-
start). If the feedback voltage drops below 0.55V (equivalent
to the output voltage dropping below 68% of nominal), the
comparator will trip causing the part to latch off. The LM1770
will not resume switching until the input voltage is taken
below the UVLO threshold and then brought back into its
normal operating range. The purpose of this function is to
prevent a severe short circuit from causing damage to the
application. Due to the fast transient response of the
LM1770 a severe short on the output causing the feedback
to drop would only occur if the load applied had an effective
resistance that approaches the PMOS R
DS(ON)
.
SOFT-START
To limit in-rush current and allow for a controlled startup the
LM1770 incorporates an internal soft-start scheme. Every
time the input voltage rises through the UVLO threshold the
LM1770 goes through an adaptive soft-start that limits the
LM1770
www.national.com 8
Application Information (Continued)
on-time and expands the minimum off-time. In addition the
part will only activate the PMOS allowing a discontinuous
mode of operation enabling a pre-biased startup. The time
spent in soft-start will depend on the load applied to the
output, but is usually close to a set time that is dependent on
the timing option. The approximate soft-start time can be
seen below for each timing option.
Product ID Timing T
SS
LM1770S 0.5µs 1ms
LM1770T 1.0µs 1.2ms
LM1770U 2.0µs 1.8ms
It should be noted that as soon as soft-start terminates the
short-circuit protection is enabled. This means that if the
output voltage does not reach at least 68% of its final value
the part will latch off. Therefore, if the input supply is ex-
tremely slow rising such that at the end of soft-start the input
voltage is still near the UVLO threshold, a timing option
should be chosen to ensure that maximum duty-cycle per-
mits the output to meet the minimum condition. As a general
recommendation it is advisable to use the 2000ns option
(LM1770U) in conditions where the output voltage is 2.5V or
greater to avoid false latch offs when there is concern re-
garding the input supply slew rate.
JITTER
The LM1770 utilizes a constant on-time control scheme that
relies on the output voltage ripple to provide a consistent
switching frequency. Under certain conditions, excessive
noise can couple onto the feedback pin causing the switch
node to appear to have a slight amount of jitter. This is not
indicative of an unstable design. The output voltage will still
regulate to the exact same value. Careful component selec-
tion and layout should minimize any external influence.
In addition to any external noise that can add to the jitter
seen on the switch node, the LM1770 will always have a
slight amount of switch jitter. This is because the LM1770
makes a small alteration in the reference voltage every 128
cycles to improve its accuracy and long term performance.
This has the effect of causing a change in the switching
frequency at that instant. When viewed on an oscilloscope
this can be seen as a jitter in the switch node. The change in
feedback voltage or output voltage, however, is almost indis-
tinguishable.
Design Guide
The following section walks the designer through the steps
necessary to select the external components to build a fully
functional power supply. As with any DC-DC converter nu-
merous trade-offs are possible to optimize the design for
efficiency, size or performance. These will be taken into
account and highlighted throughout this discussion.
The first equation to calculate for any buck converter is
duty-cycle. Ignoring conduction losses associated with the
FETs and parasitic resistances it can be approximated by:
A more accurate calculation for duty-cycle can be used that
takes into account the voltage drops across the FETs. This
equation can be used to determine the slight load depen-
dency on switch frequency if needed. Otherwise the simpli-
fied equation works well for component calculation.
FREQUENCY SELECTION
The LM1770 is available with three preset timing options that
select the on-time and hence determine the switching fre-
quency of the application. Increasing the switching fre-
quency has the effect of reducing the inductor size needed
for the application while requiring a slight trade-off in effi-
ciency. The table below shows the same frequency table as
shown earlier, with the exception that the recommended
timing option for each V
OUT
is highlighted. It is not recom-
mended to use a high switching frequency with V
OUT
equal
to or greater than 2.5V due to the maximum duty-cycle
limitations of the device coupled with the internal startup.
V
OUT
Timing Options
500ns 1000ns 2000ns
0.8 485 242 -
1 606 303 -
1.2 727 364 -
1.5 909 455 227
1.8 - 545 273
2.5 - - 379
3.3 - - 500
Recommended switching frequency (kHz) based on output voltage and
timing option.
INDUCTOR SELECTION
The inductor selection is an iterative process likely requiring
several passes before settling on a final value. The reason
for this is because it influences the amount of ripple seen at
the output, a critical component to ensure general stability of
an adaptive on-time circuit. For the first pass at inductor
selection the value can be obtained by targeting a maximum
peak-to-peak ripple current equal to 30% of the maximum
load current. The inductor current ripple (I
L
) can be calcu-
lated by:
Therefore, L can be initially set to the following by applying
the 30% rule:
The other features of the inductor that can be selected
besides inductance value are saturation current and core
material. Because the LM1770 does not have a current limit,
it is recommended to have a saturation current higher than
the maximum output current to handle any ripple or momen-
tary over-current events. The core material also influences
the saturation characteristics as ferrite materials have a hard
saturation curve and care should be taken such that they
never saturate during normal use. A shielded inductor or low
LM1770
www.national.com9
Design Guide (Continued)
profile unshielded inductor is recommended to reduce EMI.
This also helps prevent any spurious noise from picking up
on the feedback node resulting in unexpected tripping of the
feedback comparator.
OUTPUT CAPACITOR
One of the most important components to select with the
LM1770 is the output capacitor. This is because its size and
ESR have a direct effect on the stability of the loop. A
constant on-time control scheme works by sensing the out-
put voltage ripple and switching the FETs appropriately. The
output voltage ripple on a buck converter can be approxi-
mated by stating that the AC inductor ripple flows entirely
into the output capacitor and is created by the ESR of the
capacitor. This can be expressed in the following equation:
V
OUT
=I
L
xR
ESR
To ensure stability, two constraints need to be met. The first
is that there is sufficient ESR to create enough voltage ripple
at the feedback pin. The recommendation is to have at least
10mV of ripple seen at the feedback pin. This can be calcu-
lated by multiplying the output voltage ripple by the gain
seen through the feedback resistors. This gain, H, can be
calculated below:
If the output voltage is fairly high, causing significant attenu-
ation through the feedback resistors, a feed-forward capaci-
tor can be used. This is actually recommended for most
circuits as it improves performance. See the feed-forward
capacitor section for more details.
The second criteria is to ensure that there is sufficient ripple
at the output that is in-phase with the switch. The problem
exists that there is actually ripple caused by the capacitor
charging and discharging, not only the ESR ripple. Since
these are effectively out of phase, problems can exist. To
avoid this issue it is recommended that the ratio of the two
ripples (β) is always greater than 5. To calculate the mini-
mum ESR value needed, the following equation can be
used.
In general the best capacitors to use are chemistries that
have a known and consistent ESR across the entire operat-
ing temperature range. Tantalum capacitors or similar chem-
istries such as Niobium Oxide perform well along with certain
families of Aluminum Electrolytics. Small value POSCAPs
and SP CAPs also work as they have sufficient ESR. When
used in conjunction with a low value inductor it is possible to
have an extremely stable design. The only capacitors that
require modification to the circuit are ceramic capacitors.
Ceramic capacitors cause problems meeting both criteria
because they have low ESR and low capacitance. There-
fore, if they are to be used, an external ESR resistor (RSNS)
should be added. This can be seen below in the following
circuit.
20166218
This circuit uses an additional resistor in series with the
inductor to add ripple at the output. It is placed in this location
and used in combination with the feed-forward capacitor
(C
FF
) to provide ripple to the feedback pin, without adding
ripple or a DC offset to the output. The benefit of using a
ceramic capacitor is still obtained with this technique. Be-
cause the addition of the resistor results in power loss, this
circuit implementation is only recommended for low currents
(2A and below). The power loss and rating of the resistor
should be taken into account when selecting this compo-
nent.
This circuit implementation utilizing the feed-forward capaci-
tor begins to experience limitations when the output voltage
is small. Previously the circuit relied on the C
FF
for all the
ripple at the feedback node by assuming that the resistor
divider was negligible. As V
OUT
decreases this can not be
assumed. The resistor divider contributes a larger amount of
ripple which is problematic as it is also out of phase. There-
fore the resistor location should be changed to be in series
with the output capacitor. This can be viewed as adding an
effective ESR to the output capacitor.
LM1770
www.national.com 10
Design Guide (Continued)
20166219
FEED-FORWARD CAPACITOR
The feed-forward capacitor is used across the top feedback
resistor to provide a lower impedance path for the high
frequency ripple without degrading the DC accuracy. Typi-
cally the value for this capacitor should be small enough to
prevent load transient errors because of the discharging
time, but large enough to prevent attenuation of the ripple
voltage. In general a small ceramic capacitor in the range of
1nF to 10nF is sufficient.
If C
FF
is used then it can be assumed that the ripple voltage
seen at the feedback pin is the same as the ripple voltage at
the output. The attenuation factor H no longer needs to be
used. However, in these conditions, it is recommended to
have a minimum of 20mV ripple at the feedback pin. The use
ofaC
FF
capacitor is recommended as it improves the regu-
lation and stability of the design. However, its benefit is
diminished as V
OUT
starts approaching V
REF
, therefore it is
not needed in this situation.
INPUT CAPACITOR
The dominating factor that usually sets an input capacitors’
size is the current handling ability. This is usually determined
by the package size and ESR of the capacitor. If these two
criteria are met then there usually should be enough capaci-
tance to prevent impedance interactions with the source. In
general it is recommended to use a ceramic capacitor for the
input as they provide a low impedance and small footprint.
One important note is to use a good dielectric for the ceramic
capacitor such as X5R or X7R. These provide better over
temperature performance and also minimize the DC voltage
derating that occurs on Y5V capacitors. To calculate the
input capacitor RMS current, the equation below can be
used:
which can be approximated by,
MOSFET Selection
The two FETs used in the LM1770 requires attention to
selection of parameters to ensure optimal performance of
the power supply. The high side FET should be a PFET and
the low side an NFET. These can be integrated in one
package or as two separate packages. The criteria that
matter in selection are listed below:
VDS VOLTAGE RATING
The first selection criteria is to select FETs that have suffi-
cient V
DS
voltage ratings to handle the maximum voltage
seen at the input plus any transient spikes that can occur
from parasitic ringing. In general most FETs available for this
application will have ratings from 8V to 20V. If a larger
voltage rating is used then the performance will most likely
be degraded because of higher gate capacitance.
RDSON
The R
DS(ON)
specification is important as it determines sev-
eral attributes of the FET and the overall power supply. The
first is that it sets the maximum current of the FET for a given
package. A lower R
DS(ON)
will permit a higher allowable
current and reduce conduction losses, however, it will in-
crease the gate capacitance and the switching losses.
GATE DRIVE
The next step is to ensure that the FETs are capable of
switching at the low Vin supplies used by the LM1770. The
FET should have the Rdson specified at either 1.8V or 2.5V
to ensure that it can switch effectively as soon as the
LM1770 starts up.
GATE CHARGE
Because the LM1770 utilizes a fixed dead-time scheme to
prevent cross conduction, the FET transitions must occur in
this time. The rise and fall time of the FETs gate can be
influenced by several factors including the gate capacitance.
LM1770
www.national.com11
MOSFET Selection (Continued)
Therefore the total gate charge of both FETs should be
limited to less than 20nC at 4.5V V
GS
. The lower the number
the faster the FETs should switch and the better the effi-
ciency.
RISE / FALL TIMES
A better indication of the actual switching times of the FETs
can be found in their electrical characteristics table. The rise
and fall time should be specified and selected to be at a
minimum. This helps improve efficiency and ensuring that
shoot through does not occur.
GATE CHARGE RATIO
Another consideration in selecting the FETs is to pay atten-
tion to the Qgd / Qgs ratio. The reason for this is that proper
selection can prevent spurious turn on. If we look at the
NFET for example, when the FET is turning off, the gate
signal will pull to ground. Conversely the PFET will be turn-
ing on, causing the SW node to rise towards V
IN
. The gate to
drain capacitance of the NFET couples the SW node to the
gate and will cause it to rise. If this voltage is excessive, then
it could weakly turn on the low side FET causing an effi-
ciency loss. However, this coupling is mitigated by having a
large gate to source capacitance of the FET, which helps to
hold the gate voltage down. Ideally, a very low Qgd / Qgs
would be ideal, but in practice it is common to find the
number around 1. As a general rule, the lower the ratio, the
better.
If the above selection criteria have been met it is useful to
generate a figure of merit to allow comparison between the
FETs. One such method is to multiply the R
DS(ON)
of the FET
by the total gate charge. This allows an easy comparison of
the different FETs available. Once again, the lower the prod-
uct, the better.
FEEDBACK RESISTORS
The feedback resistors are used to scale the output voltage
to the internal reference value such that the loop can be
regulated. The feedback resistors should not be made arbi-
trarily large as this creates a high impedance node at the
feedback pin that is more susceptible to noise. A combined
value of 50kfor the two resistors is adequate. To calculate
the resistor values use the equation below. Typically the low
side resistor is initially set to a pre-determined value such as
10 k.
V
FB
is the internal reference voltage that can be found in the
electrical characteristics table or approximated by 0.8V.
The output voltage value can be set in a precise manner by
taking into account the fact that the reference voltage is
regulating the bottom of the output ripple as opposed to the
average value. This relationship is shown in the figure below.
20166223
It can be seen that the average output voltage (VOUT_AC-
TUAL) is higher than the output voltage (VOUT_SET) that
was calculated by the earlier equation by exactly half the
output voltage ripple. The output voltage that is targeted for
regulation may then be appended according to the voltage
ripple. This can be seen below:
V
OUT_ACTUAL
=V
OUT_SET
+
1
2
V
OUT
=V
OUT_SET
+
1
2
I
L
x
R
ESR
Efficiency Calculations
One of the most important parameters to calculate during the
design stage is the expected efficiency of the system. This
can help determine optimal FET selection and can be used
to calculate expected temperature rise of the individual com-
ponents. The individual losses of each component are bro-
ken down and the equations are listed below:
QUIESCENT CURRENT
The quiescent current consumed by the LM1770 is one of
the major sources of loss within the controller. However, from
a system standpoint this is usually less than 0.5% of the
overall efficiency. Therefore, it could easily be omitted but is
shown for completeness:
P
IQ
=V
IN
xI
Q
CONDUCTION LOSS
There are three losses associated with the external FETs.
From the DC standpoint there is the I-squared R loss,
caused by the on resistance of the FET. This can be mod-
eled for the PMOS by:
P
P_COND
=DxR
DSON_PMOS
xI
OUT2
and the NMOS by:
P
N_COND
=(1-D)xR
DSON_NMOS
xI
OUT2
LM1770
www.national.com 12
Efficiency Calculations (Continued)
SWITCHING LOSS
The next loss is the switching loss that is caused by the need
to charge and discharge the gate capacitance of the FETs
every cycle. This can be approximated by:
P
P_SWITCH
=V
IN
xQ
g_PMOS
xf
SW
for the PMOS, and the same approach can be adapted for
the NMOS:
P
N_SWITCH
=V
IN
xQ
g_NMOS
xf
SW
TRANSITIONAL LOSS
The last FET power loss is the transitional loss. This is
caused by switching the PMOS while it is conducting current.
This approach only models the PMOS transition, the NMOS
loss is considered negligible because it has minimal drain to
source voltage when it switches due to the conduction of the
body diode. Therefore the transitional loss of the PMOS can
be modeled by:
P
P_TRANSITIONAL
=0.5xV
IN
xI
OUT
xf
SW
x(t
r
+t
f
)
t
r
and t
f
are the rise and fall times of the FET and can be
found in their corresponding datasheet. Typically these num-
bers are simulated using a 6drive, which corresponds well
to the LM1770. Given this, no adjustment is needed.
DCR LOSS
The last source of power loss in the system that needs to be
calculated is the loss associated with the inductor resistance
(DCR) which can be calculated by
P
DCR
=R
DCR
xI
OUT2
EFFICIENCY
The efficiency, η, can then be calculated by summing all the
power losses and then using the equation below:
Thermals
By breaking down the individual power loss in each compo-
nent it makes it easy to determine the temperature rise of
each component. Generally the expected temperature rise
of the LM1770 is extremely low as it is not in the power path.
Therefore the only two items of concern are the PMOS and
the NMOS. The power loss in the PMOS is the sum of the
conduction loss and transitional loss, while the NMOS only
has conduction loss. It is assumed that any loss associated
with the body diode conduction during the dead-time is
negligible.
For completeness of design it is important to watch out for
the temperature rise of the inductor. Assuming the inductor is
kept out of saturation the predominant loss will be the DC
copper resistance. At higher frequencies, depending on the
core material, the core loss could approach or exceed the
DCR losses. Consult with the inductor manufacturer for ap-
propriate temp curves based on current.
Layout
The LM1770, like all switching regulators, requires careful
attention to layout to ensure optimal performance. The fol-
lowing steps should be taken to aid in the layout. For more
information refer to Application Note AN-1299.
1. Ensure that the ground connections of the input capaci-
tor, output capacitor and NMOS are as close as pos-
sible. Ideally these should all be grounded together in
close proximity on the component side of the board.
2. Keep the switch node small to minimize EMI without
degrading thermal cooling of the FETs.
3. Locate the feedback resistors close to the IC and keep
the feedback trace as short as possible. Do not run any
feedback traces near the switch node.
4. Keep the gate traces short and keep them away from the
switch node as much as possible.
5. If a small bypass capacitor is used on V
IN
(0.1µF) place
it as close to the pin, with the ground connection as
close to the chip ground as possible.
LM1770
www.national.com13
Physical Dimensions inches (millimeters) unless otherwise noted
SOT23-5 Package
NS Package Number MF05A
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves
the right at any time without notice to change said circuitry and specifications.
For the most current product information visit us at www.national.com.
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform when
properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in a significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
BANNED SUBSTANCE COMPLIANCE
National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances
and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at:
www.national.com/quality/green.
Lead free products are RoHS compliant.
National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com
Tel: 1-800-272-9959
National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
National Semiconductor
Asia Pacific Customer
Support Center
Email: ap.support@nsc.com
National Semiconductor
Japan Customer Support Center
Fax: 81-3-5639-7507
Email: jpn.feedback@nsc.com
Tel: 81-3-5639-7560
www.national.com
LM1770 Low-Voltage SOT23 Synchronous Buck Controller With No External Compensation
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Communications and Telecom www.ti.com/communications
Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers
Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps
DLP®Products www.dlp.com Energy and Lighting www.ti.com/energy
DSP dsp.ti.com Industrial www.ti.com/industrial
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Security www.ti.com/security
Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2011, Texas Instruments Incorporated