Document Number: 38-05545 Rev. *M Page 9 of 38
Functional Overview
All synchronous inputs pass through input registers controlled by
the rising edge of the clock. All data outputs pass through output
registers control l e d by the rising edge of the clock.
The CY7C1386D/CY7C1387D supports secondary cache in
systems using either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium® and i486
processors. The linear burst sequence is suited for processors
that use a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the processor address
strobe (ADSP) or the controller address strobe (ADSC). Address
advancement through the burst sequence is controlled by the
ADV input. A two-bit on-chip wraparound burst counter captures
the first address in a burst sequence and automatically
increments the address for the rest of the burst access.
Byte write operations are qualified with the byte write enable
(BWE) and byte write select (BWX) inputs. A global write enable
(GW) overrides all byte write inputs and writes data to all four
bytes. All writes are simplified with on-chip synchronous self
timed write circuitry.
Synchronous chip selects CE1, CE2, CE3 and an asynchronous
output enable (OE ) provide for easy bank selection and output
tristate control. ADSP is ignored if CE1 is HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)
chip selects are all asserted active, and (3) the write signals (GW ,
BWE) are all deasserted HIGH. ADSP is ignored if CE1 is HIGH.
The address presented to the address inputs is stored into the
address advancement logic and the address register while being
presented to the memory core. The corresponding data is
allowed to propagate to the input of the output regi sters. At the
rising edge of the next clock the data is allowed to propagate
through the output register and onto the data bus within tCO if OE
is active LOW. The only exception occurs when the SRAM is
emerging from a deselected state to a selected state, its outputs
are always tristated during the first cycle of the access. After the
first cycle of the access, the outputs are controlled by the OE
signal. Consecutive single read cycles are supported.
The CY7C1386D/CY7C1387D is a double cycle deselect part.
After the SRAM is deselected at clock rise by the chip select and
either ADSP or ADSC signals, its output tristates immediately
after th e ne xt cl ock rise .
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions are
satisfied at clock rise: (1) ADSP is asserted LOW and (2) chip
select is asserted active. The address presented is loaded into
the address register and the address advancement logic while
being delivered to the memory core. The write signals (GW,
BWE, and BWX) and ADV inputs are ignored during this first
cycle.
ADSP triggered write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQx inputs is written into the
corresponding address location in the memory core. If GW is
HIGH, the write operation is controlled by BWE and BWX signals.
The CY7C1386D/CY7C1387D provides byte write capability that
is described in the write cycle description table. Asserting the
byte write enable input (BWE) with the selected byte write input,
selectively writes to the desired bytes. Bytes not selected during
a byte write operation remains unaltered. A synchronous self
timed write mechanism has be en provided to simplify the write
operations.
The CY7C1386D/CY7C1387D is a common I/O device, the
output enable (OE) must be deasserted HIGH before presenting
data to the DQ inputs. This tristates the output drivers. As a
safety precaution, DQ are automatically tristated whenever a
write cycle is detected, regardless of the state of OE.
Single Write Accesses Initiated by ADSC
ADSC write accesses are initiated when the following conditions
are satisfied: (1) ADSC is asserted LOW , (2) ADSP is deasserted
HIGH, (3) chip select is asserted active, and (4) the ap propriate
combination of the write inputs (GW, BWE, and BWX) are
asserted active to conduct a write to the desired byte (s). ADSC
triggered write accesses require a single clock cycle to complete.
The address presented is loaded into the address registe r and
the address advancement logic while being delivered to the
memory core. The ADV input is ignored during this cycle. If a
global write is conducted, the data presented to the DQX is
written into the corresponding address location in the memory
core. If a byte write is conducted, only the selected bytes are
written. Bytes not selected during a byte write operation remains
unaltered. A synchronous self timed write mechanism has been
provided to simplify the write operations.
The CY7C1386D/CY7C1387D is a common I/O device, the
output enable (OE) must be deasserted HIGH before presenting
data to the DQX inputs. This tristates the output drivers. As a
safety precaution, DQX are automatically tristated whenever a
write cycle is detected, regardless of the state of OE.
Burst Sequences
The CY7C1386D/CY7C1387D provides a two-bit wraparound
counter, fed by A[1:0], that implements either an interleaved or
linear burst sequence. The interleaved burst sequence is
designed specifically to suppo rt Intel Pentium applications. The
linear burst sequence is designed to support processors that
follow a linear burst sequence. The burst sequence is user
selectable through the MODE input.
Asserting ADV LOW at clock rise automatically increments the
burst counter to the next address in the burst sequence. Both
read and write burst operations are supported.