1. General description
The 74HC574; 74HCT574 is a high-speed Si-gate CMOS device and is pin compatible
with Low-power Schottky TTL. It is specified in compliance with JEDEC standard no. 7A.
The 74HC574; 74HCT574 are octal D-type flip-flops featuring separate D-type inputs for
each flip-flop and 3- state output s for bus-oriented application s. A clock (CP) and an output
enable (OE) input are common to all flip-flops. The 8 flip-flops will store the state of their
individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH
CP transition. When OE is LOW the contents of the 8 flip-flops are available at the
outputs. When OE is HIGH, the outputs go to the high-impedance OFF-state. Op eration of
the OE input does not affect the state of the flip-flops.
The 74HC574; 74HCT574 is functionally identical to:
74HC564: but has non-inverting outputs
74HC374; 74HCT374: but has a different pin arrangement
2. Features and benefits
3-state non-inverting outputs for bus oriented applications
8-bit positive, edge-triggered register
Common 3-state output enable input
ESD protection:
HBM JESD22-A114F exceeds 2000 V
MM JESD22-A115 -A ex ce ed s 200 V
Specified from 40 °Cto+85°C and from 40 °Cto+125°C
3. Ordering information
74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Rev. 5 — 25 April 2012 Product data sheet
Table 1. Ordering information
Type number Package
Temperature rang e Name Description Version
74HC574N 40 °C to +125 °C DIP20 plastic dual in-line package; 20 leads (300 mil) SOT146-1
74HCT574N
74HC574D 40 °C to +125 °C SO20 plastic small outline package; 20 leads;
body width 7.5 mm SOT163-1
74HCT574D
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 2 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
4. Functional diagram
74HC574DB 40 °C to +125 °C SSOP20 plastic shrink small outline package; 20 leads;
body width 5.3 mm SOT339-1
74HCT574DB
74HC574PW 40 °C to +125 °C TSSOP20 plastic thin shrink small outline package; 20 leads;
body width 4.4 mm SOT360-1
74HCT574PW
Table 1. Ordering information …continued
Type number Package
Temperature rang e Name Description Version
Fig 1. Functional di agram
mna800
3-STATE
OUTPUTS
FF1
to
FF8
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7 12
13
14
15
16
17
18
19
D0
D1
D2
D3
D4
D5
D6
D7
CP
OE
9
11
1
8
7
6
5
4
3
2
Fig 2. Logic diag ram
001aah077
D0
CP
OE
Q0
D
CP
Q
FF1
D1
Q1
D
CP
Q
FF2
D2
Q2
D
CP
Q
FF3
D3
Q3
D
CP
Q
FF4
D4
Q4
D
CP
Q
FF5
D5
Q5
D
CP
Q
FF6
D6
Q6
D
CP
Q
FF7
D7
Q7
D
CP
Q
FF8
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 3 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
5. Pinning information
5.1 Pinning
Fig 3. Logic symbol Fig 4. IEC logic symbol
mna798
D0
D1
D2
D3
D4
D5
D6
D7 OE
CP Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
11
1
12
13
14
15
16
17
18
19
9
8
7
6
5
4
3
2
mna446
12
13
14
15
16
17
18
11 C1
1EN
1D 19
9
8
7
6
5
4
3
2
Fig 5. Pin configuration DIP20 and SO20 Fig 6. Pin configuration SSOP20 and TSSOP20
74HC574
74HCT574
OE VCC
D0 Q0
D1 Q1
D2 Q2
D3 Q3
D4 Q4
D5 Q5
D6 Q6
D7 Q7
GND CP
001aan290
1
2
3
4
5
6
7
8
9
10
12
11
14
13
16
15
18
17
20
19
74HC574
74HCT574
OE VCC
D0 Q0
D1 Q1
D2 Q2
D3 Q3
D4 Q4
D5 Q5
D6 Q6
D7 Q7
GND CP
001aan291
1
2
3
4
5
6
7
8
9
10
12
11
14
13
16
15
18
17
20
19
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 4 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
5.2 Pin description
6. Functional description
[1] H = HIGH voltage level;
h = HIGH voltage level one setup time prior to the HIGH-to-LOW CP transition;
L = LOW voltage level;
l = LOW voltage level one setup time prior to the HIGH-to-LOW CP transition;
Z = high-impedance OFF-state;
= LOW-to-HIGH clock transition.
7. Limiting values
[1] For DIP20 package: Ptot derates linearly with 12 mW/K above 70 °C.
[2] For SO20: Ptot derates linearly with 8 mW/K above 70 °C.
For SSOP20 and TSSOP20 packages: Ptot derates linearly with 5.5 mW/K above 60 °C.
Table 2. Pin description
Symbol Pin Description
OE 1 3-state output enable input (active LOW)
D[0:7] 2, 3, 4, 5, 6, 7, 8, 9 data input
GND 10 ground (0 V)
CP 11 clock input (LOW-to-HIGH, edge triggered)
Q[0:7] 19, 18, 17, 16, 15, 14, 13, 12 3-state flip-flop output
VCC 20 supply voltage
Table 3. Function table[1]
Operating mode Input Internal
flip-flop Output
OE CP Dn Qn
Load and read register L lL L
LhH H
Load register and disable output H lL Z
HhH Z
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions Min Max Unit
VCC supply voltage 0.5 +7 V
IIK input clamping current VI < 0.5 V or VI>V
CC +0.5 V - ±20 mA
IOK output clamping current VO<0.5 V or VO>V
CC +0.5V - ±20 mA
IOoutput current VO = 0.5 V to (VCC +0.5V) - ±35 mA
ICC supply current - +70 mA
IGND ground current - 70 mA
Tstg storage temperature 65 +150 °C
Ptot total power dissipation DIP20 p ackage [1] - 750 mW
SO20, SSOP20 and TSSOP20 packages [2] - 500 mW
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 5 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
8. Recommended operating conditions
9. Static characteristics
Table 5. Recommended operating con ditions
Voltages are referenced to GND (ground = 0 V)
Symbol Parameter Conditions 74HC574 74HCT574 Unit
Min Typ Max Min Typ Max
VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V
VIinput voltage 0 - VCC 0- V
CC V
VOoutput voltage 0 - VCC 0- V
CC V
Tamb ambient temperature 40 +25 +125 40 +25 +125 °C
Δt/ΔV input transition rise and fall rate VCC = 2.0 V - - 625 - - - ns/V
VCC = 4.5 V - 1.67 139 - 1.67 139 ns/V
VCC = 6.0 V - - 83 - - - ns/V
Table 6. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 °C40 °C to +85 °C40 °C to +125 °CUnit
Min Typ Max Min Max Min Max
74HC574
VIH HIGH-level
input voltage VCC = 2.0 V 1.5 1.2 - 1.5 - 1.5 - V
VCC = 4.5 V 3.15 2.4 - 3.15 - 3.15 - V
VCC = 6.0 V 4.2 3.2 - 4.2 - 4.2 - V
VIL LOW-level
input voltage VCC = 2.0 V - 0.8 0.5 - 0.5 - 0.5 V
VCC = 4.5 V - 2.1 1.35 - 1.35 - 1.35 V
VCC = 6.0 V - 2.8 1.8 - 1.8 - 1.8 V
VOH HIGH-level
output voltage VI=V
IH or VIL
IO=20 μA; VCC = 2.0 V 1.9 2.0 - 1.9 - 1.9 - V
IO=20 μA; VCC = 4.5 V 4.4 4.5 - 4.4 - 4.4 - V
IO=20 μA; VCC = 6.0 V 5.9 6.0 - 5.9 - 5.9 - V
IO=6.0 mA; VCC = 4.5 V 3.98 4.32 - 3.84 - 3.7 - V
IO=7.8 mA; VCC = 6.0 V 5.48 5.81 - 5.34 - 5.2 - V
VOL LOW-level
output voltage VI=V
IH or VIL
IO=20μA; VCC = 2.0 V - 0 0.1 - 0.1 - 0.1 V
IO=20μA; VCC = 4.5 V - 0 0.1 - 0.1 - 0.1 V
IO=20μA; VCC = 6.0 V - 0 0.1 - 0.1 - 0.1 V
IO= 6.0 mA; VCC = 4.5 V - 0.15 0.26 - 0.33 - 0.4 V
IO= 7.8 mA; VCC = 6.0 V - 0.16 0.26 - 0.33 - 0.4 V
IIinput leakage
current VI=V
CC or GND;
VCC =6.0V --±0.1 - ±1.0 - ±1.0 μA
IOZ OFF-state
output current VI=V
IH or VIL;
VO=V
CC or GND;
VCC =6.0V
--±0.5 - ±5.0 - ±10.0 μA
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 6 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
ICC supply current VI=V
CC or GND; IO=0A;
VCC =6.0V - - 8.0 - 80 - 160 μA
CIinput
capacitance -3.5- pF
74HCT574
VIH HIGH-level
input voltage VCC = 4.5 V to 5.5 V 2.0 1.6 - 2.0 - 2.0 - V
VIL LOW-level
input voltage VCC = 4.5 V to 5.5 V - 1.2 0.8 - 0.8 - 0.8 V
VOH HIGH-level
output voltage VI=V
IH or VIL; VCC =4.5V
IO=20 μA 4.4 4.5 - 4.4 - 4.4 - V
IO=6 mA 3.98 4.32 - 3.84 - 3.7 - V
VOL LOW-level
output voltage VI=V
IH or VIL; VCC =4.5V
IO=20μA - 0 0.1 - 0.1 - 0.1 V
IO= 6.0 mA - 0.16 0.26 - 0.33 - 0.4 V
IIinput leakage
current VI=V
CC or GND;
VCC =5.5V --±0.1 - ±1.0 - ±1.0 μA
IOZ OFF-state
output current VI=V
IH or VIL; VCC =5.5V;
VO=V
CC or GND per input
pin; other inputs at VCC or
GND; IO=0A
--±0.5 - ±5.0 - ±10 μA
ICC supply current VI=V
CC or GND; IO=0A;
VCC =5.5V - - 8.0 - 80 - 160 μA
ΔICC additional
supply current VI=V
CC 2.1 V;
other inputs at VCC or GND;
VCC = 4.5 V to 5.5 V;
IO=0A
per input pin; Dn inputs - 50 180 - 225 - 245 μA
per input pin; OE input - 125 450 - 563 - 613 μA
per input pin; CP input - 150 540 - 675 - 735 μA
CIinput
capacitance -3.5- pF
Table 6. Static characteristics …continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Symbol Parameter Conditions 25 °C40 °C to +85 °C40 °C to +125 °CUnit
Min Typ Max Min Max Min Max
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 7 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
10. Dynamic characteristics
Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 10.
Symbol Parameter Conditions 25 °C40 °C to +85 °C40 °C to +125 °CUnit
Min Typ Max Min Max Min Max
For type 74HC574
tpd propagation
delay CP to Qn; see Figure 7 [1]
VCC = 2.0 V - 47 150 - 190 - 225 ns
VCC = 4.5 V - 17 30 - 35 - 45 ns
VCC =5V; C
L=15pF - 14 - - - - - ns
VCC = 6.0 V - 14 26 - 33 - 38 ns
ten enable time OE to Qn; see Figure 9 [2]
VCC = 2.0 V - 44 140 - 175 - 210 ns
VCC = 4.5 V - 16 28 - 35 - 42 ns
VCC = 6.0 V - 13 24 - 30 - 36 ns
tdis disable time OE to Qn; see Figure 9 [3]
VCC = 2.0 V - 39 125 - 155 - 190 ns
VCC = 4.5 V - 14 25 - 31 - 38 ns
VCC = 6.0 V - 11 21 - 26 - 32 ns
tttransition
time Qn; see Figure 7 [4]
VCC = 2.0 V - 14 60 - 75 - 90 ns
VCC = 4.5 V - 5 12 - 15 - 18 ns
VCC = 6.0 V - 4 10 - 13 - 15 ns
tWpulse width CP HIGH or LOW;
see Figure 8
VCC = 2.0 V 80 14 - 100 - 120 - ns
VCC = 4.5 V 16 5 - 20 - 24 - ns
VCC = 6.0 V 14 4 - 17 - 20 - ns
tsu set-up time Dn to CP; see Figure 8
VCC = 2.0 V 60 6 - 75 - 90 - ns
VCC = 4.5 V 12 2 - 15 - 18 - ns
VCC = 6.0 V 10 2 - 13 - 15 - ns
thhold time Dn to CP; see Figure 8
VCC = 2.0 V 5 0 - 5 - 5 - ns
VCC = 4.5 V 5 0 - 5 - 5 - ns
VCC = 6.0 V 5 0 - 5 - 5 - ns
fmax maximum
frequency CP; see Figure 7
VCC = 2.0 V 6.0 37 - 4.8 - 4.0 - MHz
VCC = 4.5 V 30 112 - 24 - 20 - MHz
VCC =5V; C
L= 15 pF - 123 - - - - - MHz
VCC = 6.0 V 35 133 - 28 - 24 - MHz
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 8 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
[1] tpd is the same as tPLH and tPHL.
[2] ten is the same as tPZH and tPZL.
[3] tdis is the same as tPLZ and tPHZ.
[4] tt is the same as tTHL and tTLH.
[5] CPD is used to determine the dynamic power dissipation (PD in μW).
PD=C
PD ×VCC2×fi×N+(CL×VCC2×fo) where:
fi = input frequency in MHz;
fo= output frequency in MHz;
CL= output load capacitance in pF;
VCC = supply voltage in V;
N = number of inputs switching;
(CL×VCC2×fo) = sum of outputs.
CPD power
dissipation
capacitance
CL=50pF;f=1 MHz;
VI=GNDtoV
CC
[5] -22- - - - -pF
For type 74HCT574
tpd propagation
delay CP to Qn; see Figure 7 [1]
VCC = 4.5 V - 18 33 - 41 - 50 ns
VCC =5V; C
L=15pF - 15 - - - - - ns
ten enable time OE to Qn; see Figure 9 [2]
VCC = 4.5 V - 19 33 - 41 - 50 ns
tdis disable time OE to Qn; see Figure 9 [3]
VCC = 4.5 V - 16 28 - 35 - 42 ns
tttransition
time Qn; see Figure 7 [4]
VCC = 4.5 V - 5 12 - 15 - 18 ns
tWpulse width CP HIGH or LOW;
see Figure 8
VCC = 4.5 V 16 7 - 20 - 24 - ns
tsu set-up time Dn to CP; see Figure 8
VCC = 4.5 V 12 3 - 15 - 18 - ns
thhold time Dn to CP; see Figure 8
VCC = 4.5 V 5 1- 5 - 5 - ns
fmax maximum
frequency CP; see Figure 7
VCC = 4.5 V 30 69 - 24 - 20 - MHz
VCC =5V; C
L=15pF - 76 - - - - - MHz
CPD power
dissipation
capacitance
CL=50pF;f=1 MHz;
VI=GNDtoV
CC
[5] -25- - - - -pF
Table 7. Dynamic characteristics …continued
Voltages are referenced to GND (ground = 0 V); CL = 50 pF unless otherwise specified; for test circuit see Figure 10.
Symbol Parameter Conditions 25 °C40 °C to +85 °C40 °C to +125 °CUnit
Min Typ Max Min Max Min Max
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 9 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
11. Waveforms
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 7. Propagation delay input (CP) to output (Qn), output transition time, clock input (CP) pulse width and the
maximum frequency (CP)
001aan292
CP input
1/f
max
t
W
t
THL
t
TLH
t
PHL
t
PLH
V
OH
V
I
GND
V
OL
V
M
V
M
10 %
90 %
Qn output
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 8. The data input (D) to clock input (CP) set-up times and clock input (CP) to data input (D) hold times
mna803
GND
GND
th
tsu th
tsu
VM
VM
VM
VI
VOH
VOL
VI
Qn output
CP input
Dn input
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 10 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Measurement points are given in Table 8.
VOL and VOH are typical voltage output levels that occur with the output load.
Fig 9. Enable and disable times
Table 8. Measurement points
Type Input Output
VMVMVXVY
74HC574 0.5VCC 0.5VCC 0.1VCC 0.9VCC
74HCT574 1.3 V 1.3 V 0.1VCC 0.9VCC
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 11 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Test data is given in Table 9.
Definitions test circuit:
RT = Termination resistance should be equal to output impedance Zo of the pulse generator.
CL = Load capacitance including jig and probe capacitance.
RL = Load resistance.
S1 = Test selection switch.
Fig 10. Test circuit for measuring switching times
V
M
V
M
t
W
t
W
10 %
90 %
0 V
V
I
V
I
negative
pulse
positive
pulse
0 V
V
M
V
M
90 %
10 %
t
f
t
r
t
r
t
f
001aad983
DUT
V
CC
V
CC
VIVO
RT
RLS1
CL
open
G
Table 9. Test data
Type Input Load S1 position
VItr, tfCLRLtPHL, tPLH tPZH, tPHZ tPZL, tPLZ
74HC574 VCC 6ns 15pF, 50 pF 1kΩopen GND VCC
74HCT574 3 V 6 ns 15 pF, 50 pF 1 kΩopen GND VCC
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 12 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
12. Package outline
Fig 11. Package outline SOT146-1 (DIP20)
UNIT A
max. 1 2 b1cD E e M
H
L
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm
inches
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
SOT146-1 99-12-27
03-02-13
A
min. A
max. bZ
max.
w
ME
e1
1.73
1.30 0.53
0.38 0.36
0.23 26.92
26.54 6.40
6.22 3.60
3.05 0.2542.54 7.62 8.25
7.80 10.0
8.3 24.2 0.51 3.2
0.068
0.051 0.021
0.015 0.014
0.009 1.060
1.045 0.25
0.24 0.14
0.12 0.010.1 0.3 0.32
0.31 0.39
0.33 0.0780.17 0.02 0.13
SC-603MS-001
MH
c
(e )
1
ME
A
L
seating plane
A1
wM
b1
e
D
A2
Z
20
1
11
10
b
E
pin 1 index
0 5 10 mm
scale
Note
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
(1)
(1) (1)
DIP20: plastic dual in-line package; 20 leads (300 mil) SOT146-1
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 13 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Fig 12. Package outline SOT163-1 (SO20)
UNIT A
max. A1A2A3bpcD
(1) E(1) (1)
eH
ELL
pQZ
ywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm
inches
2.65 0.3
0.1 2.45
2.25 0.49
0.36 0.32
0.23 13.0
12.6 7.6
7.4 1.27 10.65
10.00 1.1
1.0 0.9
0.4 8
0
o
o
0.25 0.1
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
Note
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.
1.1
0.4
SOT163-1
10
20
wM
bp
detail X
Z
e
11
1
D
y
0.25
075E04 MS-013
pin 1 index
0.1 0.012
0.004 0.096
0.089 0.019
0.014 0.013
0.009 0.51
0.49 0.30
0.29 0.05
1.4
0.055
0.419
0.394 0.043
0.039 0.035
0.016
0.01
0.25
0.01 0.004
0.043
0.016
0.01
0 5 10 mm
scale
X
θ
A
A1
A2
HE
Lp
Q
E
c
L
vMA
(A )
3
A
SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1
99-12-27
03-02-19
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 14 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Fig 13. Package outline SOT339-1 (SSOP20)
UNIT A1A2A3bpcD
(1) E(1) eH
ELL
pQ(1)
Zywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.21
0.05 1.80
1.65 0.38
0.25 0.20
0.09 7.4
7.0 5.4
5.2 0.65 7.9
7.6 0.9
0.7 0.9
0.5 8
0
o
o
0.131.25 0.2 0.1
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.
1.03
0.63
SOT339-1 MO-150 99-12-27
03-02-19
X
wM
θ
A
A1
A2
bp
D
HE
Lp
Q
detail X
E
Z
e
c
L
vMA
(A )
3
A
110
20 11
y
0.25
pin 1 index
0 2.5 5 mm
scale
SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm SOT339-1
A
max.
2
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 15 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Fig 14. Package outline SOT360-1 (TSSOP20)
UNIT A1A2A3bpcD
(1) E(2) (1)
eH
ELL
pQZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 0.15
0.05 0.95
0.80 0.30
0.19 0.2
0.1 6.6
6.4 4.5
4.3 0.65 6.6
6.2 0.4
0.3 0.5
0.2 8
0
o
o
0.13 0.10.21
DIMENSIONS (mm are the original dimensions)
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
0.75
0.50
SOT360-1 MO-153 99-12-27
03-02-19
wM
bp
D
Z
e
0.25
110
20 11
pin 1 index
θ
A
A1
A2
Lp
Q
detail X
L
(A )
3
HE
E
c
vMA
X
A
y
0 2.5 5 mm
scale
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm SOT360-1
A
max.
1.1
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 16 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
13. Abbreviations
14. Revision history
Table 10. Ab breviations
Acronym Description
CMOS Complementary Metal Oxide Semiconductor
ESD ElectroStatic Discharge
HBM Human Body Model
MM Machine Model
TTL Transistor-Transistor Logic
Table 11. Revision history
Document ID Release date Data sheet status Change notice Supersedes
74HC_HCT574 v.5 20120425 Product data sheet - 74HC_HCT574 v.4
Modifications: VX and VY measurement points added to Table 8.
74HC_HCT574 v.4 20111219 Product data sheet - 74HC_HCT574 v.3
Modifications: Legal pages updated.
74HC_HCT574 v.3 20101215 Product data sheet - 74HC_HCT574_CNV v.2
74HC_HCT574_CNV v.2 19970827 Product specification - -
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 17 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
15. Legal information
15.1 Data sheet status
[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term ‘short data sheet’ is explained in section “Definitions”.
[3] The product status of de vice(s) descr ibed in th is docume nt may have cha nged since this docume nt was publis hed and ma y dif fer in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
15.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liab ility for the consequences of
use of such information.
Short data sheet — A short dat a sheet is an extract from a full data sheet
with the same product type number(s) and tit le. A short data sh eet is intended
for quick reference only and shou ld not be rel ied u pon to cont ain det ailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conf lict with the short data sheet, the
full data sheet shall pre vail.
Product specificat ionThe information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to off er functions and qualities beyon d those described in the
Product data sheet.
15.3 Disclaimers
Limited warr a nty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Se miconductors takes no
responsibility for the content in this document if provided by an inf ormation
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequ ential damages (including - wit hout limitatio n - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggreg ate and cumulative l iability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductor s.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descripti ons, at any time and without
notice. This document supersedes and replaces all informa tion supplied prior
to the publication hereof .
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in perso nal injury, death or severe property or environment al
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconducto rs products in such equipment or
applications and ther efore such inclu sion and/or use is at the cu stomer’s own
risk.
Applications — Applications that are described herein for any of these
products are for il lustrative purposes only. NXP Semiconductors makes no
representation or warranty tha t such application s will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and ope ration of their applications
and products using NXP Semiconductors product s, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suit able and fit for the custome r’s applications and
products planned, as well as fo r the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associate d with t heir
applications and products.
NXP Semiconductors does not accept any liabil ity related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the appl ication or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for th e customer’s applications and pro ducts using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress rating s only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanent ly and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individua l agreement. In case an individual
agreement is concluded only the ter ms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
No offer to sell or license — Nothing i n this document may be interpreted or
construed as an of fer t o sell product s that is open for accept ance or t he grant,
conveyance or implication of any license under any copyri ghts, patents or
other industrial or intellectual property rights.
Document status[1][2] Product status[3] Definition
Objective [short] data sheet Development This document contains data from the objective specification for product development.
Preliminary [short] dat a sheet Qualification This document contains data from the preliminary specificat ion.
Product [short] dat a sheet Production This document contains the product specification.
74HC_HCT574 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.
Product data sheet Rev. 5 — 25 April 2012 18 of 19
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors prod uct is automotive qualified,
the product is not suitable for automo tive use. It i s neit her qualif ied nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automot ive specifications and standard s, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever cust omer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting f rom customer design an d
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Translations — A non-English (translated) version of a document is for
reference only. The English version shall prevail in case of any discrepancy
between the translated and English versions.
15.4 Trademarks
Notice: All refe renced brands, produc t names, service names and trademarks
are the property of their respect i ve ow ners.
16. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com
NXP Semiconductors 74HC574; 74HCT574
Octal D-type flip-flop; positive edge-trigger; 3-state
© NXP B.V. 2012. All rights reserved.
For more information, please visit: http://www.nxp.co m
For sales office addresses, please send an email to: salesaddresses@nxp.com
Date of release: 25 April 2012
Document id entifier: 74HC_HCT574
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
17. Contents
1 General description. . . . . . . . . . . . . . . . . . . . . . 1
2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 1
4 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2
5 Pinning information. . . . . . . . . . . . . . . . . . . . . . 3
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4
6 Functional description . . . . . . . . . . . . . . . . . . . 4
7 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4
8 Recommended operating conditions. . . . . . . . 5
9 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5
10 Dynamic characteristics . . . . . . . . . . . . . . . . . . 7
11 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12
13 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 16
14 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 16
15 Legal information. . . . . . . . . . . . . . . . . . . . . . . 17
15.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 17
15.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
15.3 Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
15.4 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
16 Contact information. . . . . . . . . . . . . . . . . . . . . 18
17 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19