Device Operating
Temperature Range Package

SEMICONDUCTOR
TECHNICAL DATA
DUAL OPERATIONAL
AMPLIFIER
ORDERING INFORMATION
LM833N
LM833D TA = – 40° to +85°CPlastic DIP
SO–8
PIN CONNECTIONS
Order this document by LM833/D
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
N SUFFIX
PLASTIC PACKAGE
CASE 626
1
1
8
8
2
(Top V iew)
1
3
4
8
7
6
5
Output 1
Inputs 1 Output 2
Inputs 2
VEE
VCC
1
2
1
MOTOROLA ANALOG IC DEVICE DATA
  
 
The LM833 is a standard low–cost monolithic dual general–purpose
operational amplifier employing Bipolar technology with innovative
high–performance concepts for audio systems applications. With high
frequency PNP transistors, the LM833 offers low voltage noise
(4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate, 0.3 mV
input offset voltage with 2.0 µV/°C temperature coefficient of input offset
voltage. The LM833 output stage exhibits no deadband crossover distortion,
large output voltage swing, excellent phase and gain margins, low open loop
high frequency output impedance and symmetrical source/sink AC
frequency response.
The LM833 is specified over the automotive temperature range and is
available in the plastic DIP and SO–8 packages (P and D suffixes). For an
improved performance dual/quad version, see the MC33079 family.
Low Voltage Noise: 4.5 nV/ Hz
Ǹ
High Gain Bandwidth Product: 15 MHz
High Slew Rate: 7.0 V/µs
Low Input Offset Voltage: 0.3 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
Low Distortion: 0.002%
Excellent Frequency Stability
Dual Supply Operation
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS+36 V
Input Differential Voltage Range (Note 1) VIDR 30 V
Input Voltage Range (Note 1) VIR ±15 V
Output Short Circuit Duration (Note 2) tSC Indefinite
Operating Ambient Temperature Range TA–40 to +85 °C
Operating Junction Temperature TJ+150 °C
Storage Temperature Tstg –60 to +150 °C
Maximum Power Dissipation (Notes 2 and 3) PD500 mW
NOTES: 1.Either or both input voltages must not exceed the magnitude of VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see power dissipation performance characteristic).
3.Maximum value at TA 85°C.
Motorola, Inc. 1996 Rev 0
LM833
2MOTOROLA ANALOG IC DEVICE DATA
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VO = 0 V) VIO 0.3 5.0 mV
Average Temperature Coefficient of Input Offset Voltage VIO/T 2.0 µV/°C
RS = 10 , VO = 0 V, TA = Tlow to Thigh
Input Offset Current (VCM = 0 V, VO = 0 V) IIO 10 200 nA
Input Bias Current (VCM = 0 V, VO = 0 V) IIB 300 1000 nA
Common Mode Input Voltage Range VICR
–12 +14
–14 +12
V
Large Signal Voltage Gain (RL = 2.0 k, VO = ±10 V AVOL 90 110 dB
Output Voltage Swing: V
RL = 2.0 k, VID = 1.0 V VO+ 10 13.7
RL = 2.0 k, VID = 1.0 V VO– –14.1 –10
RL = 10 k, VID = 1.0 V VO+ 12 13.9
RL = 10 k, VID = 1.0 V VO– –14.7 –12
Common Mode Rejection (Vin = ±12 V) CMR 80 100 dB
Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V) PSR 80 115 dB
Power Supply Current (VO = 0 V, Both Amplifiers) ID 4.0 8.0 mA
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, AV = +1.0) SR5.0 7.0 V/µs
Gain Bandwidth Product (f = 100 kHz) GBW 10 15 MHz
Unity Gain Frequency (Open Loop) fU 9.0 MHz
Unity Gain Phase Margin (Open Loop) θm 60 Deg
Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) en 4.5 nV
ń
Hz
Ǹ
Equivalent Input Noise Current (f = 1.0 kHz) in 0.5 pA
ń
Hz
Ǹ
Power Bandwidth (VO = 27 Vpp, RL = 2.0 k, THD 1.0%) BWP 120 kHz
Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD 0.002 %
Channel Separation (f = 20 Hz to 20 kHz) CS –120 dB
Figure 1. Maximum Power Dissipation
versus Temperature Figure 2. Input Bias Current versus Temperature
TA, AMBIENT TEMPERATURE (
°
C)
P , MAXIMUM POWER DISSIPATION (mW)
D
I , INPUT BIAS CURRENT (nA)
IB
800
600
400
200
0
–50 0 50 100 150
1000
800
600
400
200
0
–55 –25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
VCC = +15 V
VEE = –15 V
VCM = 0 V
LM833
3
MOTOROLA ANALOG IC DEVICE DATA
TA, AMBIENT TEMPERATURE (
°
C)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
20
15
10
5.0
0–25 0 25 50 75 100 125–55
VCC = +15 V
VEE = –15 V
f = 100 kHz
Figure 3. Input Bias Current versus
Supply Voltage Figure 4. Supply Current versus
Supply Voltage
Figure 5. DC Voltage Gain
versus Temperature Figure 6. DC Voltage Gain versus
Supply Voltage
Figure 7. Open Loop Voltage Gain and
Phase versus Frequency Figure 8. Gain Bandwidth Product
versus Temperature
TA, AMBIENT TEMPERATURE (
°
C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
I , SUPPLY CURRENT (mA)
S
A , OPEN LOOP VOLTAGE GAIN (dB)
VOL A , DC VOLTAGE GAIN (dB)
VOL
800
600
400
200
05.0 10 15 20
10
8.0
6.0
4.0
2.0
0
110
105
100
95
90
–55 –25 0 25 50 75 100 125
110
100
90
80
0 5.0 10 15 20
120
100
80
60
40
20
01.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
0
45
90
135
180
5.0 10 15 20
, EXCESS PHASE (DEGREES)
RL =
TA = 25
°
C
VCC
VO
VEE
IS
VCC = +15 V
VEE = –15 V
RL = 2.0 k
VCC = +15 V
VEE = –15 V
RL = 2.0 k
TA = 25
°
C
Phase
Gain
, INPUT BIAS CURRENT (nA)IIB
A , DC VOLTAGE GAIN (dB)
VOL
+
RL = 2.0 k
TA = 25
°
C
TA = 25
°
C
LM833
4MOTOROLA ANALOG IC DEVICE DATA
VO, OUTPUT VOLTAGE (V )
pp
VO, OUTPUT VOLTAGE (V )
pp
Figure 9. Gain Bandwidth Product versus
Supply Voltage Figure 10. Slew Rate versus Temperature
Figure 11. Slew Rate versus Supply Voltage Figure 12. Output Voltage versus Frequency
Figure 13. Maximum Output Voltage
versus Supply Voltage Figure 14. Output Saturation Voltage
versus Temperature
TA, AMBIENT TEMPERATURE (
°
C)
VCC, |VEE|, SUPPLY VOLTAGE (V)
f, FREQUENCY (Hz)
GBW, GAIN BANDWIDTH PRODUCT (MHz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCC, |VEE|, SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (
°
C)
SR, SLEW RATE (V/ s)
µ
SR, SLEW RATE (V/ s)
µ
V , OUTPUT SATURATION VOLTAGE |V|
sat
30
20
10
05.0 10 15 20
10
8.0
6.0
4.0
2.0
–55 –25 0 25 50 75 100 125
10
8.0
6.0
4.0
2.0
0
35
30
25
20
15
10
5.0
010 100 1.0 k 10 k 1.0 M 10 M 100 k
20
15
10
5.0
0
–5.0
–10
–15
–20
15
14
13
5.0 10 15 20
5.0 10 15 20 –55 –25 0 25 50 75 100 125
f = 100 kHz
TA = 25
°
C
RL = 2.0k
AV = +1.0
TA = 25
°
C
Vin
VO
RL
VO
VO +
RL = 10 k
TA = 25
°
C+Vsat
–Vsat
VCC = +15 V
VEE = –15 V
RL = 10 k
+
VCC = +15 V
VEE = –15 V
RL = 2.0 k
AV = +1.0 Vin VO
RL
+
Falling
Rising
VCC = +15 V
VEE = –15 V
RL = 2.0 k
THD
v
1.0%
TA = 25
°
C
Falling
Rising
LM833
5
MOTOROLA ANALOG IC DEVICE DATA
e , INPUT NOISE VOLTAGE (nV/ )
f, FREQUENCY (Hz)
2.0
1.0
0.7
0.5
0.4
0.3
0.2
10 100 1.0 k 10 k 100 k
Figure 15. Power Supply Rejection
versus Frequency Figure 16. Common Mode Rejection
versus Frequency
, INPUT NOISE CURRENT (pA/
Figure 17. Total Harmonic Distortion
versus Frequency Figure 18. Input Referred Noise Voltage
versus Frequency
Figure 19. Input Referred Noise Current
versus Frequency
f, FREQUENCY (Hz) f, FREQUENCY (Hz)
f, FREQUENCY (Hz)f, FREQUENCY (Hz)
RS, SOURCE RESISTANCE (
)
PSR, POWER SUPPLY REJECTION (dB)
CMR, COMMON MODE REJECTION (dB)
THD, TOTAL HARMONIC DIST ORTION (%)
n
140
120
100
80
60
40
20
0
100 1.0 k 10 k 100 k 1.0 M 10 M
1.0
0.1
0.01
0.001
10
5.0
2.0
1.0
100
10
1.0
10 100 1.0 k 10 k 100 k
1.0 10 100 1.0 k 10 k 100 k 1.0 M
140
120
100
80
60
40
20
160
100 1.0 k 10 k 100 k 1.0 M 10 M
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = –15 V
TA = 25
°
C
–PSR
VCM
V0
×
ADM
ADM
+
VCM
VO
CMR = 20 Log
VO
RL
+
n
+PSR = 20 Log
–PSR = 20 Log
VEE
VO/ADM
()
V
CC
VO/ADM
()
+PSR
VCC
ADM
+
VEE
VO
i)
e , INPUT NOISE VOLTAGE (nV/ )
n
Figure 20. Input Referred Noise Voltage
versus Source Resistance
VCC = +15 V
VEE = –15 V
Vn(total) = (inRS)2 +en2 +
TA = 25
°
C4KTRS
Ǹ
Hz
VCC = +15 V
VEE = –15 V
VCM = 0 V
VCM =
±
1.5 V
TA = 25
°
C
VCC = +15 V
VEE = –15 V
RS = 100
TA = 25
°
C
VCC = +15 V
VEE = –15 V
RL = 2.0 k
TA = 25
°
C
VCC = +15 V
VEE = –15 V
TA = 25
°
C
VO = 1.0 Vrms
VO = 3.0 Vrms
Hz
Hz
LM833
6MOTOROLA ANALOG IC DEVICE DATA
Figure 21. Inverting Amplifier Figure 22. Noninverting Amplifier Slew Rate
Figure 23. Noninverting Amplifier Overshoot
t, TIME (2.0
µ
s/DIV) t, TIME (2.0
µ
s/DIV)
t, TIME (200 ns/DIV)
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
V , OUTPUT VOLTAGE (10 mV/DIV)
O
VCC = +15 V
VEE = –15 V
RL = 2.0 k
CL = 0 pF
AV = –1.0
TA = 25
°
C
VCC = +15 V
VEE = –15 V
RL = 2.0 k
CL = 0 pF
AV = +1.0
TA = 25
°
C
VCC = +15 V
VEE = –15 V
RL = 2.0 k
CL = 0 pF
AV = +1.0
TA = 25
°
C
LM833
7
MOTOROLA ANALOG IC DEVICE DATA
OUTLINE DIMENSIONS
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
14
58
F
NOTE 2 –A–
–B–
–T–
SEATING
PLANE
H
J
GDK
N
C
L
M
M
A
M
0.13 (0.005) B M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.40 10.16 0.370 0.400
B6.10 6.60 0.240 0.260
C3.94 4.45 0.155 0.175
D0.38 0.51 0.015 0.020
F1.02 1.78 0.040 0.070
G2.54 BSC 0.100 BSC
H0.76 1.27 0.030 0.050
J0.20 0.30 0.008 0.012
K2.92 3.43 0.115 0.135
L7.62 BSC 0.300 BSC
M––– 10 ––– 10
N0.76 1.01 0.030 0.040
__
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
N SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
SEATING
PLANE
14
58
A0.25 MCBSS
0.25 MBM
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A1.35 1.75
A1 0.10 0.25
B0.35 0.49
C0.18 0.25
D4.80 5.00
E1.27 BSCe3.80 4.00
H5.80 6.20
h
0 7
L0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
D
EH
A
Be
B
A1
CA
0.10
LM833
8MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer .
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center ,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – T OUCHTONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
LM833/D
*LM833/D*