Standard Power MOSFETs IRF320, IRF321, IRF322, IRF323 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 2.5A and 3.0A, 350V-400V fos(on) = 1.8Q and 2.50 Features: @ SOA is power-dissipation limited @ Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance @ Majority carrier device The $RF320, !RF321, IRF322 and IRF323 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- ing regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching tran- sistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The iRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings File Number 1569 N-CHANNEL ENHANCEMENT MODE D 6 | s 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE , C GATE DRAIN (FLANGE ) O 92Cs-37680! JEDEC TO-204AA Parameter IRF320 #RF321 HAF 322 IRF323 Units Vos Drain - Source Voltage 400 350 400 350 Vv Yocr Orain - Gate Voltage (Rg = 20K O 400 350 400 350 v Ip @Tc = 25C Continuous Drain Current 3.0 3.0 2.5 2.5 A Ip @ Te = 100C Continuous Drain Current 2.0 2.0 1.5 1.5 A lom Pulsed Drain Current @) 12 12 10 10 A Vos Gate - Source Voltage +20 v Pp @Tc = 25C Max. Power Dissipati 40 (See Fig. 14) w Linear Derating Factor 0.32 (See Fig. 14) wee ILM Inductive Current, Clamped (See Fig. 16 and 16}( = 100xH A 12 | 42 | 10 | 10 re orang Racin e tead Temperature 300 {0.063 in. (1.6mm) trom case for 10s) CStandard Power MOSFETs IRF320, IRF321, IRF322, IRF323 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min, | Typ. | Max. Units Test Conditions BVpsgs_ Drain - Source Breakdown Voltage 1RF320 | agg | _ _ Vv Veg = OV IRF322 IRF321 = IRF323 350 - _ v Ip = 250nA VGgith Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Vgs- Ip = 250uA ess Gate-Source Leakage Forward ALL - = 100 nA Vos = 20V lggs _ Gate-Source Leakage Reverse ALL ~ |-100 nA Ves = -20V loss Zero Gate Voltage Drain Current ALL _ ~ 250 BA Vos = Max. Rating. Vgg = OV = | 1000 | yA Vps = Max. Rating x 0.8, Vgg = OV, Tc = 125C Ipion) On-State Drain Current @ IRF320 | 3 _ _ A {RF 321 , Vos?! R Vv tov DS ? 'Dion) * DSton) max.' YGS * 1RF322 | 3g _ _ A IRF 323 RpSton) Static Drain-Source On-State IRF320 _ Ss 18 2 Resistance IRF321 Vee = 10V.In = 115A mar322 | |ael os 0 Gs sumo IRF 323 . : ats Forward Transconductance @ ALL 1o | 20] Stor Vos? !pioni * Rasion) max. 'p = 1:54 Ciss input Capacitance ALL ~ 450 _ pF Veg = OV. Vpg = 25V.f = 1.0 MHz Coss __ Output Capacitance ALL - 100 = oF See Fig. 10 Crsg___ Reverse Transfer Capacitance ALL ~ 20} pF tion) Turn-On Delay Time ALL ~ 20 40 ns Yop = 0.5 Voss. Ip = 1.54, Zo = 500 ty Rise Time ALL - 25 60 ns See Fig. 17 tgtofft Turn-Off Delay Time ALL - 50 100 ns {MOSFET switching times are essentially tf Fall Time ALL _ 25 50 ns independent of operating temperature.) Qg Total Gate Charge ALL _ 12 15 nc Ves = 10V, 'pb = 4.08, Vos = 0.8 Max. Rating. {Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially Qos Gate-Source Charge ALL ~ 60 9.0 nc independent of operating temperature.) Qgg Gate-Drain ('Miller} Charge ALL _ 6.0 9.0 ac lp Internal Drain Inductance ALL - 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die. ts Internal Source Inductance ALL - jizs] ~ nH Measured from the to source pin, 6mm (0.25 in.) from header G and source banding us pad, s Thermal Resistance Rinuc Junction-to-Case ALL = _ 3.42 | cw Rincs __Case-to-Sink ALL = 0.1 = SCcW Mounting surface flat, smooth, and greased. RthjA _Junction-to-Ambient ALL ~ - 30 | ocw Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current iRF320 _ _ 3.0 A Modified MOSFET symbof (Body Diode) IRF321 . showing the integral D IRF322 reverse P-N junction rectifier. wrraza | ~ | ~ | 25 | A ism Pulse Source Current IRF320 (Body Diode) @ iRF321 | ~ | A s IRF322 s weaz3 | ~ | ~ | ' a Vsp _ Diode Forward Voltage @ IRE3Z0 _ _ 16 v To = 28C, Ig = 3.04, Vgg = OV 1RF322 _ _ _ (RR323 - - | 15 v Te = 25C. Ig = 2.54, Veg = OV try Reverse Recovery Time ALL = 450 | ns Ty = 150C, lp = 3.04, dig/dt = 100Ains Qra Reverse Recovered Charge ALL ~ 3.1 - xc Ty = 150C, lp = 3.0A, dip/dt = 100A/ns ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. OTy = 25C to 150C. Pulse Test: Pulse width < 300us, Duty Cycie < 2% @ Repetitive Rating: Pulse width limited by max, junction temperature. See Transient Thermal impedance Curve (Fig. 5}. 3-95Standard Power MOSFETs IRF320, IRF321, IRF322, IRF323 3-96 Zensclth/Rynjc. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) 10 ur TEST ! | | Vos > 'o(on) * Fos(on) max. Ig, DRAIN CURRENT (AMPERES) Ip. DRAW CURRENT (AMPERES) 6 4 8 12 16 20 a 1 2 3 4 5 6 Vs. ORAIN-TO-SOURCE VOLTAGE {VOLTS} Vs. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics OPERATION IN THIS. AREA IS LIMITED BY Asian} Ip. DRAIN CURRENT (AMPERES) ip. ORAIN CURRENT (AMPERES) Te = 25C Ty = 150C MAX Rinse = 3.12 a 100 200 300 10 2 5 10 20 $0 100 200 500 Vg, QAAIN-TO-SOURCE VOLTAGE (VOLTS) Vps. ORAIN-TO-SGURCE VOLTAGE (VOLTS) Fig. 3 ~ Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area Os 0.2 " a 0.05 1. DUTY FACTOR, D= z SINGLE (TRANSIENT 0.02 THERMAL IMPEDANCE) 2. PER UNIT BASE = Aynyc = 3.12 DEG. C/W 4. Tym: Te = Pom Ztnscltl 0.01 10-5 2 5 wd 2 5 yd 2 5 2 2 5 wet 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal mpedance, Junction-to-Case Vs. Pulse DurationStandard Power MOSFETs IRF320, IRF321, IRF322, IRF323 WO ys PULSE 1 Vos >'pion) * Roston) max. 6 Re w Ty= 150C Ss ~ on fs, TRANSCONDUCTANCE (SIEMENS) Ipp. REVERSE DRAIN CURRENT (AMPERES) y= 250C 10 t 2 3 5 6 0 1 2 3 4 Ip. DRAIN CURRENT (AMPERES) Vp, SOURCE-TO-ORAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 125 (NORMALIZED) 8 2 2 a Vgs = 10V 085 fp = 154 BV pss. ORAIN.TO-SOURCE BREAKDOWN VOLTAGE Aipston). ORAIN-TO-SOURCE ON RESISTANCE (NORMALIZED) 075 . -40 0 40 80 120 160 40 0 a0 80 120 Ty, JUNCTION TEMPE RATURE {C} Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 20 Ves = 0 f=1 MHz ' Cigg = yp + Cog, Cas SHORTED Cras * fpg Ce, Com" Cn Co ts ~ Cas + Ogg a , CAPACITANCE tpF} o Vs, GATE-TO-SOURCE VOLTAGE (VOLTS) s 1p = 4A FOR TEST CIRCUIT SEE 8 o 10 20 ww a 50 Q 4 8 12 16 2 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) Qy, TOTAL GATE CHARGE (oC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-97Standard Power MOSFETs IRF320, IRF321, IRF322, IRF323 Ros(on) MEASURED WITH CURRENT PULSE OF = | 2.0 us OURATION. INITIAL 7, = 25C. (HEATING 2 | EFFECT OF 2.0 us PULSE 1S MINIMAL.) a5 = VY = B 8 5 AS = a 7 = o Vgs = 10V = z a Vgs = 20 z= S3 = 2 = 2 2 a z 5 2 me = 3 St 2 oa 0 0 2 4 6 8 10 12 25, 50 18 100 125 150 Ip. DRAIN CURRENT {AMPERES) Tc, CASE TEMPERATURE (C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 40 3 30 20 Py, POWER DISSIPATION (WATTS) Qo 20 40 60 80 100 120 140 Te, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY tp TO OBTAIN REQUIRED PEAK 1, Tr ouT Vgs20V th I E, + 0.58Vps5 Vc # 0.75BV ps5 L Fig. 16 Clamped Inductive Waveforms CURRENT ADJUST Ry REGULATOR TO OBTAIN SPECIFIED Ip T I 50 KS2 12 PULSE 1 O.2ut GENERATOR BATTERY rc" TO SCOPE | 0.012 { HIGH FREQUENCY L Fig. 17 Switching Time Test Circuit | { 15mA 0 --- CURRENT = SHUNT Fig. 18 Gate Charge Test Circuit 3-98 Vs {ISOLATED SUPPLY) SAME TYPE O -Vos CURRENT SHUNT