Complementary Power
Darlingtons
For Isolated Package Applications
Designed for general–purpose amplifiers and switching
applications, where the mounting surface of the device is required to
be electrically isolated from the heatsink or chassis.
Electrically Similar to the Popular TIP122 and TIP127
100 VCEO(sus)
5 A Rated Collector Current
No Isolating Washers Required
Reduced System Cost
High DC Current Gain — 2000 (Min) @ IC = 3 Adc
UL Recognized, File #E69369, to 3500 VRMS Isolation
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎ
ÎÎÎ
Symbol
ÎÎÎÎÎ
ÎÎÎÎÎ
Value
ÎÎ
ÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎ
ÎÎÎ
VCEO
ÎÎÎÎÎ
ÎÎÎÎÎ
100
ÎÎ
ÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Base Voltage
ÎÎÎ
ÎÎÎ
VCB
ÎÎÎÎÎ
ÎÎÎÎÎ
100
ÎÎ
ÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter–Base Voltage
ÎÎÎ
ÎÎÎ
VEB
ÎÎÎÎÎ
ÎÎÎÎÎ
5
ÎÎ
ÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RMS Isolation Voltage (1) Test No. 1 Per Fig. 14
(for 1 sec, R.H. < 30%, Test No. 2 Per Fig. 15
TA = 25C) Test No. 3 Per Fig. 16
ÎÎÎ
Î
Î
Î
ÎÎÎ
VISOL
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
4500
3500
1500
ÎÎ
ÎÎ
ÎÎ
VRM
S
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak
ÎÎÎ
Î
Î
Î
ÎÎÎ
IC
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
5
8
ÎÎ
ÎÎ
ÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current
ÎÎÎ
ÎÎÎ
IB
ÎÎÎÎÎ
ÎÎÎÎÎ
0.12
ÎÎ
ÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation* @ TC = 25C
Derate above 25C
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
PD
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
30
0.24
ÎÎ
ÎÎ
ÎÎ
ÎÎ
Watt
s
W/
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation @ TA = 25C
Derate above 25C
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
PD
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
2
0.016
ÎÎ
ÎÎ
ÎÎ
ÎÎ
Watt
s
W/
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction Temperature Range
ÎÎÎ
Î
Î
Î
ÎÎÎ
TJ, Tstg
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
–65 to
+150
ÎÎ
ÎÎ
ÎÎ
IC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎ
ÎÎÎÎ
Symbol
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Ambient
ÎÎÎÎ
ÎÎÎÎ
RθJA
62.5
ÎÎÎ
ÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case*
ÎÎÎÎ
ÎÎÎÎ
RθJC
4.1
ÎÎÎ
ÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Lead Temperature for Soldering Purpose
ÎÎÎÎ
ÎÎÎÎ
TL
260
ÎÎÎ
ÎÎÎ
C
*Measurement made with thermocouple contacting the bottom insulated mounting surface (in a location beneath the die), the device mounted
on a heatsink with thermal grease and a mounting torque of 6 in. lbs.
(1) Proper strike and creepage distance must be provided.
ON Semiconductor
Semiconductor Components Industries, LLC, 2002
April, 2002 – Rev. 3 1Publication Order Number:
MJF122/D
MJF122
MJF127
COMPLEMENTARY
SILICON
POWER DARLINGTONS
5 AMPERES
100 VOLTS
30 WATTS
NPN
PNP
CASE 221D–02
TO–220 TYPE
1
2
3STYLE 2:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MJF122 MJF127
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎ
ÎÎÎ
Min
ÎÎÎÎ
ÎÎÎÎ
Max
ÎÎÎ
ÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage (1)
(IC = 100 mAdc, IB = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎ
Î
Î
Î
ÎÎÎ
100
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = 50 Vdc, IB = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
ICEO
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
ÎÎÎ
ÎÎÎ
µAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCB = 100 Vdc, IE = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICBO
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
10
ÎÎÎ
Î
Î
Î
ÎÎÎ
µAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current (VBE = 5 Vdc, IC = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
IEBO
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2
ÎÎÎ
ÎÎÎ
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS (1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain (IC = 0.5 Adc, VCE = 3 Vdc)
DC Current Gain (IC = 3 Adc, VCE = 3 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎ
Î
Î
Î
ÎÎÎ
1000
2000
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage (IC = 3 Adc, IB = 12 mAdc)
Collector–Emitter Saturation Voltage (IC = 5 Adc, IB = 20 mAdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
VCE(sat)
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2
3.5
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter On Voltage (IC = 3 Adc, VCE = 3 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
VBE(on)
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
2.5
ÎÎÎ
ÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Small–Signal Current Gain (IC = 3 Adc, VCE = 4 Vdc, f = 1 MHz)
ÎÎÎÎÎ
ÎÎÎÎÎ
hfe
ÎÎÎ
ÎÎÎ
4
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance MJF127
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz) MJF122
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
300
200
ÎÎÎ
Î
Î
Î
ÎÎÎ
pF
(1) Pulse Test: Pulse Width 300 µs, Duty Cycle 2%.
Figure 1. Switching Times Test Circuit
VCC = 30 V
IC/IB = 250
IB1 = IB2
TJ = 25°C
0.1 0.7 100.5
0.3 25
5
IC, COLLECTOR CURRENT (AMP)
td @ VBE(off) = 0 V
t, TIME (s)µ
2
1
0.5
0.2
0.1
0.05
Figure 2. Typical Switching Times
ts
tf
0.3
3
0.2 1
0.07
0.7
37
PNP
NPN
1208 k
V2
APPROX.
+8 V
V1
APPROX.
-12 V 25 µs
RB
51 D1
+4 V
VCC
-30 V
RCSCOPE
TUT
tr, tf 10 ns
DUTY CYCLE = 1%
FOR td AND tr, D1 IS DISCONNECTED
AND V2 = 0
FOR NPN TEST CIRCUIT REVERSE ALL POLARITIES.
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1, MUST BE FAST RECOVERY TYPES, e.g.,
1N5825 USED ABOVE IB 100 mA
MSD6100 USED BELOW IB 100 mA
tr
0
MJF122 MJF127
http://onsemi.com
3
PD, POWER DISSIPATION (WATTS)
0
80
60
40
20
4
3
2
1
TATC
0
Figure 3. Maximum Power Derating
T, TEMPERATURE (°C)
40 60 100 120 16080 140
TC
20
t, TIME (ms)
0.01
0.1 0.5 10 20 50 100 200 500 5K 10
K
152
1
0.2
0.1
0.05
r(t), TRANSIENT THERMAL
SINGLE PULSE
RθJC(t) = r(t) RθJC
TJ(pk) - TC = P(pk) RθJC(t)
RESISTANCE (NORMALIZED)
Figure 4. Thermal Response
0.5
0.3
0.03
0.02
0.2 1K 2K30 3003
0.3 3K
TA
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 5. Maximum Forward Bias
Safe Operating Area
1
10
1
30
CURRENT LIMIT
SECONDARY BREAKDOWN
LIMIT
THERMAL LIMIT @
TC = 25°C (SINGLE PULSE)
IC, COLLECTOR CURRENT (AMPS)
0.1 23 50
3
0.3
10
0.2
d
c
TJ = 150°C1ms
5 ms
100 µs
2
5
0.5
5 10020
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 150C; TC is
variable depending on conditions. Secondary breakdown
pulse limits are valid for duty cycles to 10% provided TJ(pk)
< 150C. TJ(pk) may be calculated from the data in Figure 4.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by secondary breakdown.
MJF122 MJF127
http://onsemi.com
4
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 6. Typical Small–Signal Current Gain
f, FREQUENCY (kHz)
70
300
hfe, SMALL-SIGNAL CURRENT GAIN
30
200
100
50
TC = 25°C
VCE = 4 Vdc
IC = 3 Adc
Figure 7. Typical Capacitance
10,000
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
Cib
Cob
0.1
200
100
1000
500
300
10
30
100510.5
2000
3000
5000
10 500.2 2 20
TJ = 25°C
IC, COLLECTOR CURRENT (AMP)
NPN
MJF122 PNP
MJF127
Figure 8. Typical DC Current Gain
0.1
IC, COLLECTOR CURRENT (AMP)
200 0.2 0.5
3000
1000
10,000
hFE, DC CURRENT GAIN
VCE = 4 V
TJ = 150°C
5000
0.3 1
25°C
-55°C
2000
0.7 3
20,000
300
500
510
hFE, DC CURRENT GAIN
IB, BASE CURRENT (mA)
2.6
2.2
1.8
1.4
0.3 0.5 0.7 1025
IC = 2 A 4 A
1
6 A
TJ = 25°C
3
120 30
IB, BASE CURRENT (mA)
2.6
2.2
1.8
1.4
3
1
Figure 9. Typical Collector Saturation Region
PNP
NPN
PNP
NPN
1 100050105 100 5002 20 200
20
50
200
3000
1000
10,000
5000
2000
20,000
300
500
2 7 0.1 0.2 0.50.3 10.7 3 5 10
27
VCE = 4 V
TJ = 150°C
25°C
-55°C
IC = 2 A 4 A 6 A
700
7000
3 7 0.3 0.5 0.7 10251203037
TJ = 25°C
MJF122 MJF127
http://onsemi.com
5
V, TEMPERATURE COEFFICIENTS (mV/ C)°θ
0.1
NPN
MJF122 PNP
MJF127
10-1
0+0.4 -0.2 -0.4 -0.6+0.6 +0.2 -0.8 -1 -1.2 -1.4
IC, COLLECTOR CURRENT (AMP)
0
*IC/IB hFE 3
- 5
104
VBE, BASE-EMITTER VOLTAGE (VOLTS)
10-1
0- 0.4
, COLLECTOR CURRENT (A)
µ
IC
103
102
101
100
+0.2 +0.4 +0.6
TJ = 150°C
100°C
REVERSE FORWARD
25°C
VCE = 30 V
105
-0.6 -0.2 +0.8 +1 +1.2 +1.4
104
VBE, BASE-EMITTER VOLTAGE (VOLTS)
, COLLECTOR CURRENT (A)µIC
103
102
101
100
TJ = 150°C
100°C
REVERSE FORWARD
25°C
VCE = 30 V
105
- 4
- 3
- 2
- 1
θVB FOR VBE
25°C to 150°C
*θVC FOR VCE(sat)
IC, COLLECTOR CURRENT (AMP)
Figure 10. Typical “On” Voltages
Figure 11. Typical Temperature Coefficients
0.1
IC, COLLECTOR CURRENT (AMP)
2
1.5
V, VOLTAGE (VOLTS)
3
2.5
1
0.5
0.2 0.5 50.3 10.7 3 10
IC, COLLECTOR CURRENT (AMP)
2
1.5
V, VOLTAGE (VOLTS)
3
2.5
1
0.5
TJ = 25°C
VBE(sat) @ IC/IB = 250
VBE @ VCE = 4 V
TJ = 25°C
VBE(sat) @ IC/IB = 250
VBE @ VCE = 4 V
VCE(sat) @ IC/IB = 250
V, TEMPERATURE COEFFICIENT (mV C)°θ
72 0.1 0.2 0.5 50.3 10.7 3 1072
0.2 0.5 50.3 10.7 3 1072 0.1 0.2 0.5 50.3 1 3 1072
+ 1
+ 2
+ 3
+ 4
+ 5
0
- 5
- 4
- 3
- 2
- 1
+ 1
+ 2
+ 3
+ 4
+ 5
- 55°C to 25°C
*IC/IB hFE 3
θVB FOR VBE
*θVC FOR VCE(sat)
Figure 12. Typical Collector Cut–Off Region
VCE(sat) @ IC/IB = 250
25°C to 150°C
- 55°C to 25°C
25°C to 150°C
- 55°C to 25°C
25°C to 150°C
- 55°C to 25°C
MJF122 MJF127
http://onsemi.com
6
BASE
EMITTER
COLLECTOR
8 k 120
BASE
EMITTER
COLLECTOR
8 k 120
NPN
MJF122 PNP
MJF127
Figure 13. Darlington Schematic
MJF122 MJF127
http://onsemi.com
7
MOUNTED
FULLY ISOLATED
PACKAGE
LEADS
HEATSINK
0.110" MIN
Figure 14. Clip Mounting Position
for Isolation Test Number 1
*Measurement made between leads and heatsink with all leads shorted together
CLIP CLIP 0.107" MIN
LEADS
HEATSINK
0.107" MIN
Figure 15. Clip Mounting Position
for Isolation Test Number 2 Figure 16. Screw Mounting Position
for Isolation Test Number 3
MOUNTED
FULLY ISOLATED
PACKAGE
MOUNTED
FULLY ISOLATED
PACKAGE
LEADS
HEATSINK
TEST CONDITIONS FOR ISOLATION TESTS*
4-40 SCREW
PLAIN WASHER
HEATSINK
COMPRESSION WASHER
NUT
CLIP
HEATSINK
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw
torque o f 6 t o 8 i n .lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a con-
stant pressure on the package over time and during large temperature excursions.
Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in .lbs will
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.
Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in .lbs without adversely affecting the pack-
age. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend
exceeding 10 in .lbs of mounting torque under any mounting conditions.
Figure 17. Typical Mounting Techniques*
MOUNTING INFORMATION
**For more information about mounting power semiconductors see Application Note AN1040.
MJF122 MJF127
http://onsemi.com
8
PACKAGE DIMENSIONS
CASE 221D–02
TO–220 TYPE
ISSUE D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
STYLE 2:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
DIM
A
MIN MAX MIN MAX
MILLIMETERS
0.621 0.629 15.78 15.97
INCHES
B0.394 0.402 10.01 10.21
C0.181 0.189 4.60 4.80
D0.026 0.034 0.67 0.86
F0.121 0.129 3.08 3.27
G0.100 BSC 2.54 BSC
H0.123 0.129 3.13 3.27
J0.018 0.025 0.46 0.64
K0.500 0.562 12.70 14.27
L0.045 0.060 1.14 1.52
N0.200 BSC 5.08 BSC
Q0.126 0.134 3.21 3.40
R0.107 0.111 2.72 2.81
S0.096 0.104 2.44 2.64
U0.259 0.267 6.58 6.78
–B–
–Y–
G
N
DL
KH
A
F
Q
3 PL
123
M
B
M
0.25 (0.010) Y
SEATING
PLANE
–T–
U
CS
JR
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJF122/D
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800–282–9855 Toll Free USA/Canada