VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VSENSE
GND
++
+
SD
SD
CIN COUT
CREF
AVIN = 2.5V
VDDQ = 1.8V
VTT = 0.9V
VREF = 0.9V
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
LP2998 DDR-I and DDR-II Termination Regulator
Check for Samples: LP2998
1FEATURES DESCRIPTION
The LP2998 linear regulator is designed to meet
2 Source and Sink Current JEDEC SSTL-2 and JEDEC SSTL-18 specifications
Low Output Voltage Offset for termination of DDR1-SDRAM and DDR-II
No External Resistors Required memory. The device contains a high-speed
operational amplifier to provide excellent response to
Linear Topology load transients. The output stage prevents shoot
Suspend to Ram (STR) Functionality through while delivering 1.5A continuous current as
Low External Component Count required for DDR1-SDRAM termination, and 0.5A
continuous current as required for DDR-II termination.
Thermal Shutdown The LP2998 also incorporates a VSENSE pin to provide
Available in SOIC-8, SO PowerPAD-8 Packages superior load regulation and a VREF output as a
reference for the chipset and DIMMs.
APPLICATIONS An additional feature found on the LP2998 is an
DDR-I, DDR-II and DDR-III Termination Voltage active low shutdown (SD) pin that provides Suspend
SSTL-18 Termination To RAM (STR) functionality. When SD is pulled low,
the VTT output will tri-state providing a high
SSTL-2 and SSTL-3 Termination impedance output, while VREF remains active. A
HSTL Termination power savings advantage can be obtained in this
mode through lower quiescent current.
Typical Application Circuit
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2007–2013, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
VDDQ
PVIN
AVIN
1
2
3
4
8
7
6
5
VSENSE
VREF
SD
GND VTT
VDDQ
PVIN
AVIN
1
2
3
4
8
7
6
5
VSENSE
VREF
SD
GND VTT
GND
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Connection Diagrams
Top View
Figure 1. SO PowerPAD-8 Package
See Package Number DDA0008A
Top View
Figure 2.
SOIC-8 Package
See Package Number D0008A
Pin Descriptions
SOIC-8 Pin or SO PowerPAD-8 Pin Name Function
1 GND Ground.
2 SD Shutdown.
3 VSENSE Feedback pin for regulating VTT.
4 VREF Buffered internal reference voltage of VDDQ /2.
5 VDDQ Input for internal reference equal to VDDQ/2.
6 AVIN Analog input pin.
7 PVIN Power input pin.
8 VTT Output voltage for connection to termination resistors.
EP Exposed pad thermal connection. Connect to Ground (SO PowerPAD-8 only).
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
2Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Absolute Maximum Ratings (1)(2)
AVIN to GND 0.3V to +6V
PVIN to GND -0.3V to AVIN
VDDQ (3) 0.3V to +6V
Storage Temp. Range 65°C to +150°C
Junction Temperature 150°C
Lead Temperature (Soldering, 10 sec) 260°C
SOIC-8 Thermal Resistance (θJA) 151°C/W
SO PowerPAD-8 Thermal Resistance (θJA) 43°C/W
Minimum ESD Rating (4) 1kV
(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating range indicates conditions for which
the device is intended to be functional, but does not ensure specific performance limits. For ensured specifications and test conditions
see Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may
degrade when the device is not operated under the listed test conditions.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
(3) VDDQ voltage must be less than 2 x (AVIN - 1) or 6V, whichever is smaller.
(4) The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin.
Operating Range
Junction Temp. Range (1) -40°C to +125°C
AVIN to GND 2.2V to 5.5V
(1) At elevated temperatures, devices must be derated based on thermal resistance. The device in the SOIC-8 package must be derated at
θJA = 151.2° C/W junction to ambient with no heat sink.
Electrical Characteristics
Specifications with standard typeface are for TJ= 25°C and limits in boldface type apply over the full Operating
Temperature Range (TJ= -40°C to +125°C) (1). Unless otherwise specified, VIN = AVIN = PVIN = 2.5V.
Parameter Test Conditions Min Typ Max Units
VREF Voltage (DDR I) VIN = VDDQ = 2.3V 1.135 1.158 1.185 V
VIN = VDDQ = 2.5V 1.235 1.258 1.285 V
VIN = VDDQ = 2.7V 1.335 1.358 1.385 V
VREF Voltage (DDR II) PVIN = VDDQ = 1.7V 0.837 0.860 0.887 V
VREF PVIN = VDDQ = 1.8V 0.887 0.910 0.937 V
PVIN = VDDQ = 1.9V 0.936 0.959 0.986 V
VREF Voltage (DDR III) PVIN = VDDQ = 1.35V 0.669 0.684 0.699 V
PVIN = VDDQ = 1.5V 0.743 0.758 0.773 V
PVIN = VDDQ = 1.6V 0.793 0.808 0.823 V
ZVREF VREF Output Impedance IREF = -30 to +30 µA 2.5 k
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using
Statistical Quality Control (SQC) methods. The limits are used to calculate Average Outgoing Quality Level (AOQL).
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LP2998
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Electrical Characteristics (continued)
Specifications with standard typeface are for TJ= 25°C and limits in boldface type apply over the full Operating
Temperature Range (TJ= -40°C to +125°C) (1). Unless otherwise specified, VIN = AVIN = PVIN = 2.5V.
Parameter Test Conditions Min Typ Max Units
IOUT = 0A
VIN = VDDQ = 2.3V 1.120 1.159 1.190 V
VIN = VDDQ = 2.5V 1.210 1.259 1.290 V
VIN = VDDQ = 2.7V 1.320 1.359 1.390 V
VTT Output Voltage (DDR I) (2) IOUT = +/- 1.5A
VIN = VDDQ = 2.3V 1.125 1.159 1.190 V
VIN = VDDQ = 2.5V 1.225 1.259 1.290 V
VIN = VDDQ = 2.7V 1.325 1.359 1.390 V
IOUT = 0A, AVIN = 2.5V
PVIN = VDDQ = 1.7V 0.822 0.856 0.887 V
PVIN = VDDQ = 1.8V 0.874 0.908 0.939 V
PVIN = VDDQ = 1.9V 0.923 0.957 0.988 V
VTT Output Voltage (DDR II) (2) IOUT = +/- 0.5A, AVIN = 2.5V
PVIN = VDDQ = 1.7V 0.820 0.856 0.890 V
PVIN = VDDQ = 1.8V 0.870 0.908 0.940 V
VTT PVIN = VDDQ = 1.9V 0.920 0.957 0.990 V
IOUT = 0A, AVIN = 2.5V
PVIN = VDDQ = 1.35V 0.656 0.677 0.698 V
PVIN = VDDQ = 1.5V 0.731 0.752 0.773 V
PVIN = VDDQ = 1.6V 0.781 0.802 0.823 V
IOUT = +0.2A, AVIN = 2.5V 0.667 0.688 0.710 V
PVIN = VDDQ = 1.35V
IOUT = -0.2A, AVIN = 2.5V 0.641 0.673 0.694 V
PVIN = VDDQ = 1.35V
VTT Output Voltage (DDR III) (2)
IOUT = +0.4A, AVIN = 2.5V 0.740 0.763 0.786 V
PVIN = VDDQ = 1.5V
IOUT = -0.4A, AVIN = 2.5V 0.731 0.752 0.773 V
PVIN = VDDQ = 1.5V
IOUT = +0.5A, AVIN = 2.5V 0.790 0.813 0.836 V
PVIN = VDDQ = 1.6V
IOUT = -0.5A, AVIN = 2.5V 0.781 0.802 0.823 V
PVIN = VDDQ = 1.6V
VTT Output Voltage Offset (VREF VTT) for DDR I (3) IOUT = 0A -30 030 mV
IOUT = -1.5A -30 030 mV
IOUT = +1.5A -30 030 mV
VTT Output Voltage Offset (VREF VTT) for DDR II (3) IOUT = 0A -30 030 mV
IOUT = -0.5A -30 030 mV
VOSVtt IOUT = +0.5A -30 030 mV
VTT Output Voltage Offset (VREF VTT) for DDR III (3) IOUT = 0A -30 030 mV
IOUT = ±0.2A -30 030 mV
IOUT = ±0.4A -30 030 mV
IOUT = ±0.5A -30 030 mV
IQQuiescent Current (4) IOUT = 0A 320 500 µA
ZVDDQ VDDQ Input Impedance 100 k
ISD Quiescent current in shutdown (4) SD = 0V 115 150 µA
(2) VTT load regulation is tested by using a 10 ms current pulse and measuring VTT.
(3) VTT load regulation is tested by using a 10 ms current pulse and measuring VTT.
(4) Quiescent current is defined as the current flow into AVIN.
4Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Electrical Characteristics (continued)
Specifications with standard typeface are for TJ= 25°C and limits in boldface type apply over the full Operating
Temperature Range (TJ= -40°C to +125°C) (1). Unless otherwise specified, VIN = AVIN = PVIN = 2.5V.
Parameter Test Conditions Min Typ Max Units
IQ_SD Shutdown leakage current SD = 0V 2 5µA
VIH Minimum Shutdown High Level 1.9 V
VIL Maximum Shutdown Low Level 0.8 V
Iv VTT leakage current in shutdown SD = 0V 1 10 µA
VTT = 1.25V
ISENSE VSENSE Input current 13 nA
TSD Thermal Shutdown (5) 165 °C
TSD_HYS Thermal Shutdown Hysteresis 10 °C
(5) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction to ambient thermal
resistance, θJA, and the ambient temperature, TA. Exceeding the maximum allowable power dissipation will cause excessive die
temperature and the regulator will go into thermal shutdown.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LP2998
0 1 2 3 4 5 6
VDDQ (V)
0
0.5
1
1.5
2
2.5
3
VTT (V)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
50
100
150
200
250
300
350
400
ISD (PA)
-40°C
25°C
125°C
85°C
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
0.5
1
1.5
2
2.5
3
3.5
4
VSD (V)
0 1 2 3 4 5 6
VDDQ (V)
0
0.5
1
1.5
2
2.5
3
VREF (V)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
50
100
150
200
250
300
350
400
IQ (uA)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
0
150
300
450
600
750
900
1050
IQ (uA)
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Typical Performance Characteristics
Unless otherwise specified VIN = AVIN = PVIN = 2.5V
Iq vs AVIN in SD Iq vs AVIN
Figure 3. Figure 4.
VIH and VIL VREF vs VDDQ
Figure 5. Figure 6.
VTT vs VDDQ ISD vs AVIN over Temperature
Figure 7. Figure 8.
6Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
OUTPUT CURRENT (A)
3 3.5 4 4.5 5 5.5
2
2.2
2.4
2.6
2.8
3
OUTPUT CURRENT (A)
AVIN (V)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
OUTPUT CURRENT (A)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
OUTPUT CURRENT (A)
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
0
150
300
450
600
750
900
1050
IQ (PA)
85oC
-40oC
25oC
125oC
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
0
0.2
0.4
0.6
0.8
1
1.2
1.4
OUTPUT CURRENT (A)
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Typical Performance Characteristics (continued)
Unless otherwise specified VIN = AVIN = PVIN = 2.5V Maximum Sourcing Current vs AVIN
Iq vs AVIN over Temperature (VDDQ = 1.8V, PVIN = 1.8V)
Figure 9. Figure 10.
Maximum Sinking Current vs AVIN Maximum Sourcing Current vs AVIN
(VDDQ = 1.8V) (VDDQ = 2.5V, PVIN = 1.8V)
Figure 11. Figure 12.
Maximum Sourcing Current vs AVIN Maximum Sourcing Current vs AVIN
(VDDQ = 2.5V, PVIN = 2.5V) (VDDQ = 2.5V, PVIN = 3.3V)
Figure 13. Figure 14.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LP2998
2 2.5 3 3.5 4 4.5 5 5.5
AVIN (V)
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
OUTPUT CURRENT (A)
3 3.5 4 4.5 5 5.5
2
2.2
2.4
2.6
2.8
3
OUTPUT CURRENT (A)
AVIN (V)
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Typical Performance Characteristics (continued)
Unless otherwise specified VIN = AVIN = PVIN = 2.5V
Maximum Sinking Current vs AVIN Maximum Sourcing Current vs AVIN
(VDDQ = 2.5V) (VDDQ = 1.8V, PVIN = 3.3V)
Figure 15. Figure 16.
8Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
VTT
VREF
VDD
RS
RT
CHIPSET
MEMORY
-
+
VTT
PVIN
VDDQ
SD
GND
AVIN
VSENSE
50k
50k
+
-
VREF
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Block Diagram
DETAILED DESCRIPTION
The LP2998 is a linear bus termination regulator designed to meet the JEDEC requirements of SSTL-2 and
SSTL-18. The output, VTT is capable of sinking and sourcing current while regulating the output voltage equal to
VDDQ / 2. The output stage has been designed to maintain excellent load regulation while preventing shoot
through. The LP2998 also incorporates two distinct power rails that separates the analog circuitry from the power
output stage. This allows a split rail approach to be utilized to decrease internal power dissipation. It also permits
the LP2998 to provide a termination solution for the next generation of DDR-SDRAM memory (DDRII). The
LP2998 can also be used to provide a termination voltage for other logic schemes such as SSTL-3 or HSTL.
Series Stub Termination Logic (SSTL) was created to improve signal integrity of the data transmission across the
memory bus. This termination scheme is essential to prevent data error from signal reflections while transmitting
at high frequencies encountered with DDR-SDRAM. The most common form of termination is Class II single
parallel termination. This involves one RSseries resistor from the chipset to the memory and one RTtermination
resistor. Typical values for RSand RTare 25 Ohms, although these can be changed to scale the current
requirements from the LP2998. This implementation can be seen below in Figure 17.
Figure 17. SSTL-Termination Scheme
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LP2998
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Pin Descriptions
AVIN AND PVIN AVIN and PVIN are the input supply pins for the LP2998. AVIN is used to supply all the internal control circuitry. PVIN,
however, is used exclusively to provide the rail voltage for the output stage used to create VTT. These pins have the
capability to work off separate supplies, under the condition that AVIN is always greater than or equal to PVIN. For
SSTL-18 applications, it is recommended to connect PVIN to the 1.8V rail used for the memory core and AVIN to a rail
within its operating range of 2.2V to 5.5V (typically a 2.5V supply). PVIN should always be used with either a 1.8V or
2.5V rail. This prevents the thermal limit from tripping because of excessive internal power dissipation. If the junction
temperature exceeds the thermal shutdown threshold, the part will enter a shutdown state identical to the manual
shutdown where VTT is tri-stated and VREF remains active. A lower rail, such as 1.5V can be used but it will reduce the
maximum output current. Therefore it is not recommended for most termination schemes.
VDDQ VDDQ is the input used to create the internal reference voltage for regulating VTT. The reference voltage is generated
from a resistor divider of two internal 50kresistors. This ensures that VTT will precisely track VDDQ / 2. The optimal
implementation of VDDQ is as a remote sense. This can be achieved by connecting VDDQ directly to the 1.8V rail at
the DIMM instead of PVIN. This ensures that the reference voltage precisely tracks the DDR memory rails without a
large voltage drop from the power lines. For SSTL-18 applications, VDDQ will be a 1.8V signal, which will create a 0.9V
termination voltage at VTT (See Electrical Characteristics Table for exact values of VTT over temperature).
The purpose of the sense pin is to provide improved remote load regulation. In most motherboard applications, the
VSENSE termination resistors will connect to VTT in a long plane. If the output voltage was regulated only at the output of the
LP2998, then the long trace will cause a significant IR drop resulting in a termination voltage lower at one end of the
bus than the other. The VSENSE pin can be used to improve this performance by connecting it to the middle of the bus.
This will provide a better distribution across the entire termination bus. If remote load regulation is not used, then the
VSENSE pin must still be connected to VTT. Care should be taken when a long VSENSE trace is implemented in close
proximity to the memory. Noise pickup in the VSENSE trace can cause problems with precise regulation of VTT. A small
0.1uF ceramic capacitor placed next to the VSENSE pin can help filter any high frequency signals and prevent errors.
SHUTDOWN The LP2998 contains an active low shutdown pin that can be used for suspend to RAM functionality. In this condition,
the VTT output will tri-state while the VREF output remains active providing a constant reference signal for the memory
and chipset. During shutdown, VTT should not be exposed to voltages that exceed PVIN. With the shutdown pin
asserted low the quiescent current of the LP2998 will drop. However, VDDQ will always maintain its constant
impedance of 100kfor generating the internal reference. Therefore, to calculate the total power loss in shutdown, both
currents need to be considered. For more information refer to the Thermal Dissipation section. The shutdown pin also
has an internal pull-up current. Therefore, to turn the part on, the shutdown pin can either be connected to AVIN or left
open.
VREF VREF provides the buffered output of the internal reference voltage VDDQ / 2. This output should be used to provide the
reference voltage for the Northbridge chipset and memory. Since the inputs typically have an extremely high
impedance, there should be little current drawn from VREF. For improved performance, an output bypass capacitor can
be placed, close to the pin, to help with noise. A ceramic capacitor in the range of 0.1 µF to 0.01 µF is recommended.
This output remains active during the shutdown state and thermal shutdown events for the suspend to RAM
functionality.
VTT VTT is the regulated output that is used to terminate the bus resistors. It is capable of sinking and sourcing current while
regulating the output precisely to VDDQ / 2. The LP2998 is designed to handle continuous currents of up to +/- 1.5A
with excellent load regulation. If a transient is expected to last above the maximum continuous current rating for a
significant amount of time, then the bulk output capacitor should be sized large enough to prevent an excessive voltage
drop. If the LP2998 is to operate in elevated temperatures for long durations, care should be taken to ensure that the
maximum operating junction temperature is not exceeded. Proper thermal de-rating should always be used (Please
refer to the Thermal Dissipation section). If the junction temperature exceeds the thermal shutdown threshold, VTT will
tri-state until the part returns below the temperature hysteresis trip-point.
Component Selections
INPUT CAPACITOR
The LP2998 does not require a capacitor for input stability, but it is recommended for improved performance
during large load transients to prevent the input rail from dropping. The input capacitor should be located as
close as possible to the PVIN pin. Several recommendations exist and is dependent on the application required.
A typical value recommended for AL electrolytic capacitors is 22 µF. Ceramic capacitors can also be used. A
value in the range of 10 µF with X5R or better would be an ideal choice. The input capacitance can be reduced if
the LP2998 is placed close to the bulk capacitance from the output of the 1.8V DC-DC converter. For the AVIN
pin, a small 0.1uF ceramic capacitor is sufficient to prevent excessive noise from coupling into the device.
10 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
OUTPUT CAPACITOR
The LP2998 has been designed to be insensitive of output capacitor size or ESR (Equivalent Series Resistance).
This allows the flexibility to use any capacitor desired. The choice for output capacitor will be determined solely
on the application and the requirements for load transient response of VTT. As a general recommendation the
output capacitor should be sized above 100 µF with a low ESR for SSTL applications with DDR-SDRAM. The
value of ESR should be determined by the maximum current spikes expected and the extent at which the output
voltage is allowed to droop. Several capacitor options are available on the market and a few of these are
highlighted below:
AL - It should be noted that many aluminum electrolytics only specify impedance at a frequency of 120 Hz, which
indicates they have poor high frequency performance. Only aluminum electrolytics that have an impedance
specified at a higher frequency (100 kHz) should be used for the LP2998. To improve the ESR several AL
electrolytics can be combined in parallel for an overall reduction. An important note to be aware of is the extent
at which the ESR will change over temperature. Aluminum electrolytic capacitors tend to have rapidly increasing
ESR at cold temperatures.
Ceramic - Ceramic capacitors typically have a low capacitance, in the range of 10 to 100 µF. They also have
excellent AC performance for bypassing noise because of very low ESR (typically less than 10 m). However,
some dielectric types do not have good capacitance characteristics as a function of voltage and temperature.
Because of the typically low value of capacitance, it is recommended to use ceramic capacitors in parallel with
another capacitor such as an aluminum electrolytic. A dielectric of X5R or better is recommended for all ceramic
capacitors.
Hybrid - Several hybrid capacitors such as OS-CON and SP are available from several manufacturers. These
offer a large capacitance while maintaining a low ESR. These are the best solution when size and performance
are critical, although their cost is typically higher than any other capacitor type.
Thermal Dissipation
Since the LP2998 is a linear regulator, any current flow from VTT will result in internal power dissipation and heat
generation. To prevent damaging the part by exceeding the maximum allowable operating junction temperature,
care should be taken to derate the part based on the maximum expected ambient temperature and power
dissipation. The maximum allowable internal temperature rise (TRmax) can be calculated given the maximum
ambient temperature (TAmax) of the application and the maximum allowable junction temperature (TJmax).
TRmax = TJmax TAmax (1)
From this equation, the maximum power dissipation (PDmax) of the part can be calculated:
PDmax = TRmax /θJA (2)
The θJA of the LP2998 will depend on several variables: the package used; the thickness of copper; the number
of vias and the airflow. For instance, the θJA of the SOIC-8 is 163°C/W with the package mounted to a standard
8x4 2-layer board with 1oz. copper, no airflow, and 0.5W dissipation at room temperature. This value can be
reduced to 151.2°C/W by changing to a 3x4 board with 2 oz. copper that is the JEDEC standard. Figure 18
shows how the θJA varies with airflow for the two boards mentioned.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LP2998
0 200 400 600 800 1000
TJA
AIRFLOW (Linear Feet per Minute)
SOP Board
JEDEC Board
150
160
140
170
180
100
110
120
130
80
90
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
Figure 18. θJA vs Airflow (SOIC-8)
Additional improvements can be made by the judicious use of vias to connect the part and dissipate heat to an
internal ground plane. Using larger traces and more copper on the top side of the board can also help. With
careful layout, it is possible to reduce the θJA further than the nominal values shown in Figure 18.
Optimizing the θJA and placing the LP2998 in a section of a board exposed to lower ambient temperature allows
the part to operate with higher power dissipation. The internal power dissipation can be calculated by summing
the three main sources of loss: output current at VTT, either sinking or sourcing, and quiescent currents at AVIN
and VDDQ. During the active state (when shutdown is not held low) the total internal power dissipation can be
calculated from the following equations:
PD= PAVIN + PVDDQ + PVTT (3)
Where,
PAVIN = IAVIN * VAVIN (4)
PVDDQ = VVDDQ * IVDDQ = VVDDQ2x RVDDQ (5)
To calculate the maximum power dissipation at VTT, both the sinking and sourcing current conditions need to be
examined. Although only one equation will add into the total, VTT cannot source and sink current simultaneously.
PVTT = VVTT x ILOAD (Sinking) or (6)
PVTT = ( VPVIN - VVTT) x ILOAD (Sourcing) (7)
The power dissipation of the LP2998 can also be calculated during the shutdown state. During this condition the
output VTT will tri-state. Therefore, that term in the power equation will disappear as it cannot sink or source any
current (leakage is negligible). The only losses during shutdown will be the reduced quiescent current at AVIN
and the constant impedance that is seen at the VDDQ pin.
PD= PAVIN + PVDDQ (8)
PAVIN = IAVIN x VAVIN (9)
PVDDQ = VVDDQ * IVDDQ = VVDDQ2x RVDDQ (10)
Typical Application Circuits
Several different application circuits have been shown in Figure 19 through Figure 28 to illustrate some of the
options that are possible in configuring the LP2998. Graphs of the individual circuit performance can be found in
the Typical Performance Characteristics section of the datasheet. These curves illustrate how the maximum
output current is affected by changes in AVIN and PVIN.
SSTL-2 APPLICATIONS
For the majority of applications that implement the SSTL-2 termination scheme it is recommended to connect all
the input rails to the 2.5V rail. This provides an optimal trade-off between power dissipation and component count
and selection. An example of this circuit can be seen in Figure 19.
12 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VREF = 1.25V
VSENSE
GND
++
+
VDDQ = 2.5V
AVIN = 3.3V or 5V
VTT = 1.25V
SD
SD
PVIN = 3.3V
CIN COUT
CREF
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VREF = 1.25V
VSENSE
GND
++
+
VDDQ = 2.5V
AVIN = 2.2V to 5.5V
VTT = 1.25V
SD
SD
PVIN = 1.8V
CIN COUT
CREF
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Figure 19. Recommended SSTL-2 Implementation
If power dissipation or efficiency is a major concern then the LP2998 has the ability to operate on split power
rails (see Figure 20). The output stage (PVIN) can be operated on a lower rail such as 1.8V and the analog
circuitry (AVIN) can be connected to a higher rail such as 2.5V, 3.3V or 5V. This allows the internal power
dissipation to be lowered when sourcing current from VTT. The disadvantage of this circuit is that the maximum
continuous current is reduced because of the lower rail voltage, although it is adequate for all motherboard
SSTL-2 applications. Increasing the output capacitance can also help if periods of large load transients will be
encountered.
Figure 20. Lower Power Dissipation SSTL-2 Implementation
The third option for SSTL-2 applications in the situation that a 1.8V rail is not available and it is not desirable to
use 2.5V, is to connect the LP2998 power rail to 3.3V (see Figure 21). In this situation AVIN will be limited to
operation on the 3.3V or 5V rail as PVIN can never exceed AVIN. This configuration has the ability to provide the
maximum continuous output current at the downside of higher thermal dissipation. Care should be taken to
prevent the LP2998 from experiencing large current levels which cause the device to exceed the maximum
operating junction temperature. Because of this risk it is not recommended to supply the output stage with a
voltage higher than a nominal 3.3V rail.
Figure 21. SSTL-2 Implementation With Higher Voltage Rails
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LP2998
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VREF = 0.9V
VSENSE
GND
++
+
VDDQ = 1.8V
AVIN = 3.3V or 5.5V
VTT = 0.9V
SD
SD
PVIN = 3.3V
CIN COUT
CREF
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VSENSE
GND
++
+
SD
SD
0.01 PF
AVIN = 2.5V
VDDQ = 1.8V
VTT = 0.9V
VREF = 0.9V
220 PF
47 PF
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
DDR-II APPLICATIONS
With the separate VDDQ pin and an internal resistor divider it is possible to use the LP2998 in applications
utilizing DDR-II memory. Figure 22 and Figure 23 show several implementations of recommended circuits with
output curves displayed in the Typical Performance Characteristics.Figure 22 shows the recommended circuit
configuration for DDR-II applications. The output stage is connected to the 1.8V rail and the AVIN pin can be
connected to either a 2.5, 3.3V or 5.5V rail.
Figure 22. Recommended DDR-II Termination
If it is not desirable to use the 1.8V rail it is possible to connect the output stage to a 3.3V rail. Care should be
taken to not exceed the maximum operating junction temperature as the thermal dissipation increases with lower
VTT output voltages. For this reason it is not recommended to power PVIN with a rail higher than the nominal
3.3V. The advantage of this configuration is that it has the ability to source and sink a higher maximum
continuous current.
Figure 23. DDR-II Termination With Higher Voltage Rails
LEVEL SHIFTING
If standards other than SSTL-2 are required, such as SSTL-3, it may be necessary to use a different scaling
factor than 0.5 times VDDQ for regulating the output voltage. Several options are available to scale the output to
any voltage required. One method is to level shift the output by using feedback resistors from VTT to the VSENSE
pin. This has been illustrated in Figure 24 and Figure 25.Figure 24 shows how to use two resistors to level shift
VTT above the internal reference voltage of VDDQ/2. To calculate the exact voltage at VTT the following equation
can be used.
VTT = VDDQ/2 (1 + R1/R2) (11)
14 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VREF = 0.75V
VSENSE
GND
++
+
VDDQ = 1.5V
VDD = 2.5V
VTT = 0.75V
SD
SD
CIN COUT
CREF
R1
LP2998
+
+
VDDQ
VDD
VTT
VTT
PVIN
VDDQ
GND
AVIN
VSENSE
COUT
CIN
R2
R1
LP2998
+
+
VDDQ
VDD VTT
VTT
PVIN
VDDQ
GND
AVIN
VSENSE COUT
CIN R2
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
Figure 24. Increasing VTT by Level Shifting
Conversely, the R2 resistor can be placed between VSENSE and VDDQ to shift the VTT output lower than the
internal reference voltage of VDDQ/2. The equation relating to VTT and the resistors can be used as shown:
VTT = VDDQ/2 (1 - R1/R2) (12)
Figure 25. Decreasing VTT by Level Shifting
HSTL APPLICATIONS
The LP2998 can be easily adapted for HSTL applications by connecting VDDQ to the 1.5V rail. This will produce a
VTT and VREF voltage of approximately 0.75V for the termination resistors. AVIN and PVIN should be connected
to a 2.5V rail for optimal performance.
Figure 26. HSTL Application
QDR APPLICATIONS
Quad data rate (QDR) applications utilize multiple channels for improved memory performance. However, this
increase in bus lines increases the current levels required for termination. The recommended approach in
terminating multiple channels is to use a dedicated LP2998 for each channel. This simplifies layout and reduces
the internal power dissipation for each regulator. Separate VREF signals can be used for each DIMM bank from
the corresponding regulator with the chipset reference provided by a local resistor divider or one of the LP2998
signals. Because VREF and VTT are expected to track and the part to part variations are minor, there should be
little difference between the reference signals of each LP2998.
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LP2998
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VREF = 1.25V
VSENSE
GND
47 PF++
+
VDDQ = 2.5V
VDD = 2.5V
VTT = 1.25V
330 PF
SD
SD
+330 PF
0.01 PF
VTT
LP2998
PVIN
VDDQ
VREF
AVIN
VSENSE
GND
++
+
SD
SD
CIN COUT
CREF
AVIN = 2.5V
VDDQ = 1.8V
VTT = 0.9V
VREF = 0.9V
LP2998
SNVS521I DECEMBER 2007REVISED APRIL 2013
www.ti.com
OUTPUT CAPACITOR SELECTION
For applications utilizing the LP2998 to terminate SSTL-2 I/O signals the typical application circuit shown in
Figure 27 can be implemented.
Figure 27. Typical SSTL-2 Application Circuit
This circuit permits termination in a minimum amount of board space and component count. Capacitor selection
can be varied depending on the number of lines terminated and the maximum load transient. However, with
motherboards and other applications where VTT is distributed across a long plane, it is recommended to use
multiple bulk capacitors in addition to high frequency decoupling. Figure 28 depicts an example circuit where 2
bulk output capacitors could be situated at both ends of the VTT plane for optimal placement. Large aluminum
electrolytic capacitors are typically used for their low ESR and low cost.
Figure 28. Typical SSTL-2 Application Circuit for Motherboards
In most PC applications, an extensive amount of decoupling is required because of the long interconnects
encountered with the DDR-SDRAM DIMMs mounted on modules. As a result, bulk aluminum electrolytic
capacitors in the range of 1000uF are typically used.
PCB Layout Considerations
1. The input capacitor for the power rail should be placed as close as possible to the PVIN pin.
2. VSENSE should be connected to the VTT termination bus at the point where regulation is required. For
motherboard applications an ideal location would be at the center of the termination bus.
3. VDDQ can be connected remotely to the VDDQ rail input at either the DIMM or the Chipset. This provides the
most accurate point for creating the reference voltage.
4. For improved thermal performance excessive top side copper should be used to dissipate heat from the
package. Numerous vias from the ground connection to the internal ground plane will help. Additionally these
can be located underneath the package if manufacturing standards permit.
5. Care should be taken when routing the VSENSE trace to avoid noise pickup from switching I/O signals. A
0.1uF ceramic capacitor located close to the SENSE can also be used to filter any unwanted high frequency
signal. This can be an issue especially if long SENSE traces are used.
6. VREF should be bypassed with a 0.01 µF or 0.1 µF ceramic capacitor for improved performance. This
capacitor should be located as close as possible to the VREF pin.
16 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: LP2998
LP2998
www.ti.com
SNVS521I DECEMBER 2007REVISED APRIL 2013
REVISION HISTORY
Changes from Revision H (April 2013) to Revision I Page
Changed layout of National Data Sheet to TI format .......................................................................................................... 16
Copyright © 2007–2013, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LP2998
PACKAGE OPTION ADDENDUM
www.ti.com 11-Apr-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
LP2998MA/NOPB ACTIVE SOIC D 8 95 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LP2998
MA
LP2998MAE/NOPB ACTIVE SOIC D 8 250 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LP2998
MA
LP2998MAX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LP2998
MA
LP2998MR/NOPB ACTIVE SO PowerPAD DDA 8 95 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 125 LP2998
MR
LP2998MRE/NOPB ACTIVE SO PowerPAD DDA 8 250 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 125 LP2998
MR
LP2998MRX/NOPB ACTIVE SO PowerPAD DDA 8 2500 Green (RoHS
& no Sb/Br) CU SN Level-3-260C-168 HR -40 to 125 LP2998
MR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 11-Apr-2013
Addendum-Page 2
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LP2998MAE/NOPB SOIC D 8 250 178.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LP2998MAX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LP2998MRE/NOPB SO
Power
PAD
DDA 8 250 178.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
LP2998MRX/NOPB SO
Power
PAD
DDA 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Apr-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LP2998MAE/NOPB SOIC D 8 250 210.0 185.0 35.0
LP2998MAX/NOPB SOIC D 8 2500 367.0 367.0 35.0
LP2998MRE/NOPB SO PowerPAD DDA 8 250 213.0 191.0 55.0
LP2998MRX/NOPB SO PowerPAD DDA 8 2500 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 8-Apr-2013
Pack Materials-Page 2
MECHANICAL DATA
DDA0008A
www.ti.com
MRA08A (Rev D)
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated