Preview Products IRF360, IRF362 Avalanche-Energy-Rated N-Channel Power MOSFETs 25 A and 22 A, 400 V osion = 0.20 O and 0.25 O Features: m Single pulse avalanche energy rated a SOA is power-dissipation limited a Nanosecond switching speeds a Linear transfer characteristics a High input impedance The IRF360 and IRF362 are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of opera- tion. These are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AE metal package. ABSOLUTE MAXIMUM RATINGS File Number 2276 N-CHANNEL ENHANCEMENT MODE g2cs- 42658 TERMINAL DIAGRAM TERMINAL DESIGNATION DRAIN SOURCE GATE (FLANGE } g2CS- 3780! JEDEC TO-204AE Parameter IRF360 IRF362 Units Ip @ Tce = 28C Continuous Drain Current 25 22 A Ip @ Te = 100C Continuous Drain Current 16 14 A lpm Pulsed Drain Current 100 88 A Pp @ Tc = 26C Max. Power Dissipation 300 w Linear Derating Factor 24 wc V6s Gate-to-Source Voltage +20 v Eas Single Pulse Avalanche Energy @ 980 mJ (See Fig. 14) VAR Avalanche Current 25 A (Repetitive or Non-Repetitive) Ty Operating Junction 55 to 150 Tstg Storage Temperature Range lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) c Preview Products IRF360, IRF362 ELECTRICAL CHARACTERISTICS At Case Temperature (T,) = 25C Unless Otherwise Specified Parameter Type Min. Typ. Max. | Units Test Conditions BVpsg_Drain-to-Source Breakdown Voltage ALL 400 ~ _ Vv Ves = OV, Ip = 250 pA Rpsion) Static Drain-to-Source (RF360; 0.18 0.20 On-State Resistance @ 2 Veg = 10V. Ip = 144 IRF362 _ 0.20 0.25 'Dion) - On-State Drain Current @ IRF360 | 25 _ _ A Vos > Ibton) * Rosion) Max. IRF362 | 22 Ves = 10V Vaesith) Gate Threshold Voltage ALL | 2.0 = 40 Vv Vos = Veg. Ip = 250 pA Sts Forward Transconductance @ ALL 14 21 _ si ips = 144, Vos =50V Ipss Zero Gate Voltage Drain Current ALL 250 uA Vos = Max. Rating, Vgg = OV _ _ 1000 Vps = 0.8 x Max. Rating Ves = OV, Ty = 125C igss Gate-to-Source Leakage Forward ALL - - 100 nA Ves = 20V Igss _ Gate-to-Source Leakage Reverse ALL > ~ -100 | nA Ves = -20V Qg Total Gate Charge ALL _ 120 170 Ac Ves = 10V, Ip = 254 Vos = 0.8 x Max. Rating Qgs Gate-to-Source Charge ALL ~ 19 28 ac See Fig. 16 Qgq Gate-to-Drain (Miller) Charge ALL = 60 90 nc (Independent of operating temperature} tion) Turn-On Delay Time ALL - 22 33 ns | Vpp = 200V, Ip = 25A, Rg = 4.30 t Rise Time ALL _ 94 140 ns Rp = 7.50 tdioff) Turn-Off Delay Time ALL - 80 120 ns See Fig. 15 tf Fall Time ALL _ 66 99 ns (Independent of operating temperature} Lo Internal Drain Inductance ALL =- 5.0 - nH Measured from the drain Modified MOSFET symbol lead, 6mm (0.25 in.) from showing the internal package to center of die. inductances. lg internal Source Inductance ALL - 13 - nH Measured from the source { lead, 6mm (0.25 in.) from package to source bonding pad. Ciss Input Capacitance ALL > 4000 - pF Ves = OV. Vog = 25V Coss Output Capacitance ALL - 550 - pF f = 1.0 MHz Criss Reverse Transfer Capacitance ALL = 97 _ pF See Fig. 10 Rihuc Junction-to-Case ALL - - 0.42 | C/W Rincs Case-to-Sink ALL ~ 0.12 - C/W | Mounting surface flat, smooth, and greased Rina _ Junction-to-Ambient ALL - = 30 C/W | Typical socket mount SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS Parameter Type Min. Typ. Max. | Units Test Conditions Ig Continuous Source Current ALL - - 25 A Modified MOSFET symbol showing the integral (Body Diode) Reverse p-n junction rectifier Ism Pulsed Source Current ALL _ ~ 100 A E (Body Diode) 5 Vgp __ Diode Forward Voltage @ ALL - - 18 v Ty = 25C, Ig = 254, Vgg = OV Up Reverse Recovery Time ALL 200 460 | 1000 ns Ty = 25C, ip = 254A, diddt = 100 Alys Oar Reverse Recovery Charge ALL 3A 7A 16 ae ton Forward Turn-On Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp Repetitive Rating; Pulse width limited by maximum junction temperature (see figure 5) @ Vpp = SOV, Starting Ty = 25C, L = 2.8 mH, Peak I, = 254, Pulse width < 300 ys; Duty Cycle < 2% Preview Products . IRF360, IRF362 Ip, ORAIN CURRENT (AMPERES) Ip. ORAIN CURRENT (AMPERES) 40 1 32 24 Tp. ORAIN CURRENT (AMPERES) Vgg75.0V 4.5Vv 4.0 120 160 a Vpg: DRAIN-TO-SOURCE VOLTAGE (VOLTS) 00 oO 2 4 6 8 Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 - Typical out; ut characteristics. Fig. 2 - Typical transfer characteristics. 40 OPERATION IN THIS AREA LIMITED BY Rps-(ON) 32 IRE360 IRF360 (RF362 24 16 Ip. DRAIN CURRENT (AMPERES) .0Vv To = 25C Ty= 150C SINGLE PULSE 4.5V 0 4.0V 0 2 4 6 8 10 12 5 0 2 5 w 2 5 Vos DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg: DRAIN-TO-SOURCE VOLTAGE (VOLTS) 10 103 92GS-44234 Fig. 3 - Typical saturation characteristics. Fig. 4 - Maximum safe operating area. 107 Ee tt | NOTES: 8 1. DUTY FACTOR, D=t,/t a/ta 2. PEAK Ty=Ppy X Ztnuc + Te THERMAL RESPONSE (Zinc) 10-5 107-4 1073 107 0.4 4 10 ty, RECTANGULAR PULSE DURATION (SECONDS) Fig. 5 - Maximum effective transient thermal impedance, junction-to-case vs. pulse duration. Preview Products BVpgg- DRAIN-TO-SOURCE BREAKDOWN VOLTAGE TAANSCONDUCTANCE (SIEMENS) Tts: 10 40 Tp. DRAIN CURRENT (AMPERES) Fig. 6 - Typical transconductance vs. drain current. -25 vey og Zz 4 wn H uw) w a z o 5 1.05 8 x 5 Ht a Qo 2 g e z0.95 i z z a x ao 0.85 2 s a a a 0.75 -20 0 Ty 40 80 400 120 4 JUNCTION TEMPERATURE ( C) Fig. 8 - Breakdown voitage vs. temperature. 10000 = Cys + Cog, Cys SHORTED 8000 . 9d is t Cgg Cgy / (gg + gq) c Cys * , 6 ds gd wi 6000 Zz << - 4 oO & & 4000 uo a 2000 2 Vpg: ORAIN-TO-SOURCE VOLTAGE (VOLTS) 5 10 5 102 Fig. 10 - Typical capacitance vs. drain-to-source voltage. Ipp: REVERSE DRAIN CURRENT (AMPERES) Veg. GATE-TO-SOURCE VOLTAGE (VOLTS) IRF360, IRF362 0.4 0.8 1.2 SOUACE-TO-DRAIN VOLTAGE 1.6 (VOLTS) e. Vso Fig. 7 - Typical source-drain diode forward voltage. Ip = 258 = (NORMALIZED) Vgg = 10V 100 120 140 160 ( c) .0 ~60 -40 -20 0 40 60 80 Ty. JUNCTION TEMPERATURE Fig. 9 - Normalized on-resistance vs. temperature. 20 a ~ oo ES FOR TEST CIRCUIT SEE FIGURE 16 40 Qg. a0 120 1 TOTAL GATE CHARGE (nC) 200 Fig. 11 - Typical gate charge vs. gate-to-source voltage. 11-9 Preview Products IRF360, IRF362 2.0 25 1.6 oe = 2 Q uo a Ip, DRAIN CURRENT (AMPERES} Ros (on): ORAIN-TO-SOURCE ON RESISTANCE a Q Qo 30 60 30 120 150 25 50 75 100 125 450 Ip. DRAIN CURRENT (AMPERES) Te, CASE TEMPERATURE (C) Fig. 12 - Typical on-resistance vs. drain current. Fig. 13 - Maximum drain current vs. case temperature. Vos L VARY 'p TO OBTAIN REQUIRED PEAK I bur : Re ( a ~_ Yoo Vgg = 10 - b 0,01 Fig. 14a - Unclamped inductive test circuit. Rp Lf. 1 7 Vos + ' fi ov = Yoo | vs *c \ \ Ves } ! . Vgg = 10V 1% i A 1 \ /\ \ PULSE WIDTH 1 us I taon)} ote (4 < TT be fpe__o| + DUTY FACTOR <0.1% td(ott) Fig. 15a - Switching time test circuit. Fig. 15b - Switching time waveforms. +Vps CURRENT 9 {ISOLATED REGULATOR SupPty) SAME TYPE 10 = AS DUT BATTERY 0 | iw b-------~--- - t VG | 15 mA TE 0 -+--! VOLTAGE 2 -Vos ig = ip ________.. CURRENT CURRENT SAMPLING SAMPLING CHARGE RESISTOR RESISTOA Fig. 16a - Basic gate charge waveform. Fig. 166 - Gate charge test circuit. 11-10